SYLLABUS Academic year 2024-2025

Dean, Prof. dr. eng. Vasile-Ion Manta

1. Program data

1.1 Higher education institution	"Gheorghe Asachi" Technical University of Iași
1.2 Faculty	Automatic Control and Computer Engineering
1.3 Department	Computers
1.4 Field of studies	Computers and Information Technology
1.5 The cycle of studies ¹	Master
1.6 Study program	Artificial Intelligence

2. Subject data

20 Subjett untu						
2.1 Name of the subject / Code	Fundamentals of Machine Learning (Fundamentele învățării automate) /					
	AI.101					
2.2 Course coordinator	Lect. dr. eng. Marius Gavrilescu					
2.3 Application instructor	Assist. drd. eng. Codruț-Georgian Artene, Lect. dr. eng. Ștefan Achirei					
2.4 Year of study ² 1 2.5 Semester ³	1 2.6 Type of assessment ⁴ exam 2.7 Type of subject ⁵ DA					

3. Estimated total time of daily activities (hours per semester)

3.1 Number of hours per week		3.2 lectures	2	3.3a sem.		3.3b laboratory	1	3.3c p	roject	1
3.4 Total hours in curriculum ⁶ 56 3.5 lectures		3.5 lectures	28	3.6a sem.		3.6b laboratory	14	3.6c p	roject	14
Distribution of the time fund ⁷							No. ho	ours		
Study by textbook, course support, bibliography and notes							30			
Additional documentation in the library, on specialist electronic platforms and in the field							40			
Preparation of seminars/labs/projects, assignments, reports and portfolios						20				
Tutorial ⁸										
Examinations ⁹						4				
Other activities:										
3.7 Total hours of individual study ¹⁰ 94										

3.7 Total hours of individual study ¹⁰	94
3.8 Total hours per semester ¹¹	150
3.9 Number of credits	6

4. Prerequisites (where applicable)

<u> </u>	
4.1 curriculum ¹²	
4.2 competences	

5. Conditions (where applicable)

5.1 conducting the lectures ¹³	Video projector
5.2 conducting the seminar / laboratory / project ¹⁴	 Laboratory room with computers and Internet access The Visual Studio programming environment (academic license)

¹Bachelor / Master

²1-4 for Bachelor's, 1-2 for Master's

³*1-8 for Bachelors, 1-3 for Masters*

⁴*Exam, colloquium or VP A/R – from the curriculum*

⁵*DF* - fundamental subject, *DID* - subject in the field, *DS* - specialized subject or *DC* - complementary subject - from the education plan

⁶It is equal to 14 weeksx number of hours from point 3.1 (similar for 3.5, 3.6abc)

⁷*The lines below refer to the individual study; the total is completed at point 3.7.*

⁸Between 7 and 14 hours

⁹Between 2 and 6 hours

¹⁰*The sum of the values on the previous lines, which refer to the individual study.*

¹⁴Computing technique, software packages, experimental stands, etc.

¹¹The sum of the number of hours of direct teaching activity (3.4) and the number of hours of individual study (3.7); must be equal to the number of credits allocated to the subject (point 3.9)x 25 hours per credit.

¹²Mention the subjects that must be passed previously or equivalent

¹³Blackboard, video projector, flipchart, specific teaching materials, etc.

6. Specific competences accumulated¹⁵

		Number of credits assigned to the subject ¹⁶ : 6	Distribution of credits per competences ¹⁷
Pr ofe	CP1	1.1	
ssi	CP2	Scientific and practical research in the field of artificial intelligence.	1.1
on	CP3	Design and development of artificial intelligence systems.	1.1
al	CP4	Problem solving using artificial intelligence methods and techniques.	1
co	CP5	1	
m	CP6		
pet	CPS1		
ces	CPS2		
Tr an sve	CT1	Legislation compliant application of the intellectual property rights and of the principles, norms and values of the professional ethics code within their own strategies for rigorous, effective and responsible work.	0.1
rsa l co	CT2	Application of communication techniques and effective group work; developing empathic interpersonal communication skills and assuming leadership roles/functions in a multi-specialized team.	0.3
m pet	CT3	Creating opportunities for continuous training and the effective utilization of learning resources and techniques for personal development.	0.3
en ces	CTS		

7. Objectives of the subject (resulting from the grid of specific competences accumulated)

7.1 General objective of the subject	 Providing students with a comprehensive understanding of the core concepts, techniques, and applications within the field of machine learning. The lecture aims to offer a structured exploration of key topics such as supervised and unsupervised learning, model training and evaluation, feature engineering, and the underlying algorithms. Students are expected to gain significant knowledge and insight into the field of machine learning, enabling them to apply the corresponding algorithms and techniques to real-world problems. 		
7.2 Specific objectives	 Provide a clear understanding of fundamental machine learning concepts, including supervised and unsupervised learning, key algorithms, and their applications in various domains. Understanding the process of training machine learning models, covering topics such as data preprocessing, model selection, and performance evaluation metrics Illustrate the importance of feature engineering in enhancing model performance, emphasizing techniques to preprocess and select relevant features for improved predictive modeling. Examine commonly used machine learning algorithms, such as linear regression, decision trees, and clustering methods, outlining their strengths, weaknesses, and applicability for various classification and regression problems. Incorporate practical examples and demonstrations, enabling students to implement basic machine learning models and to apply them in real-world scenarios. 		

8. Contents

8.1 Course ¹⁸	Teaching methods ¹⁹	Remarks
1. Introduction	Lectures via Powerpoint	
Definitions; key concepts; fundamentals; types of machnie learning methods	presentations,	

¹⁵Competencies from the G1 and G1bis Grids of the study program, adapted to the specifics of the subject, for which credits are allocated (www.rncis.ro or the faculty website)
¹⁶From the education plan

¹⁷The credits allocated to the subject are distributed on professional and transversal competences according to the specifics of the subject ¹⁸Chapter and paragraph headings

¹⁹Exposition, lecture, blackboard presentation of the studied issue, use of video projector, discussions with students (for each chapter, if applicable)

(supervised, unsupervised); examples of real-world applications; course	explanations and	
overview.	discussions	
2. Supervised Learning Principles, definitions; classification vs regression; fundamental methods: linear regression, logistic regression, naïve bayes, decision trees, gradient boosting.		
3 Unsupervised Learning		
Principles, definitions; fundamental methods: K-Means, hierarchical clustering, expectation-maximization, DBSCAN; dimensionality reduction (PCA, t-SNE); anomaly detection.		
4. Feature Engineering Introduction, definitions; preprocessing techniques (standardization, normalization, encoding); feature selection; feature extraction.		
5. Ensemble Methods Introduction to ensemble methods; bagging; boosting; stacking. Case study: Random Forests.		
6. Deep Networks I Artificial neural networks: fundamentals; fully-connected architectures; forward and backpropagation; activation functions: sigmoid, tanh, ReLU, L-ReLU, ELU. Modern optimization methods: SGD, RMSProp, Adam, AdaGrad.		
7. Deep Networks II Convolutional neural networks; types of layers; convolution and correlation; training fundamentals; frequently-used architectures: U-Net, VGGNet, ResNet.		
8. Deep Networks III Recurrent neural networks: definitions, principles, description of recurrency in network layers; Long Short-Term Memory (LSTM); Gated Recurrent Units (GRU).		
9. Encoder-decoder Models General encoder-decoder layout; reccurency-based sequence-to-sequence architectures; attention mechanisms.		
10. Transformer Neural Networks Basic concepts; overview of a single-head architecture; general structure of encoder and decoder; self-attention in transformers. Generative models: Generative pretrained transformers (GPT), BERT, CLIP, DALL-E.		
11. Overfitting and Regularization Overfitting definition, reasons, negative effects; regularization techniques (L1, L2, dropout; early stopping).		
12. Hyperparameter Optimization Introduction, motivation; popular methods: grid search, random search, hyperband.		
13. Evaluation of Machine Learning Models Evaluation metrics: accuracy, precision, recall, F1-score; cross-validation. bias- variance tradeoff.		
14. Transfer Learning Traditional machine learning vs transfer learning; role of pre-trained models; inductive and transductive transfer learning; fine-tuning, feature extraction, and domain adaptation methods.		
Course references	l	1

- T. Jiang, J. L. Gradus, and A. J. Rosellini, "Supervised Machine Learning: A Brief Primer," Behavior Therapy, vol. 51, no. 5, pp. 675–687, Sep. 2020, doi: 10.1016/j.beth.2020.05.002.
 J. E. van Engelen and H. H. Hoos, "A survey on semi-supervised learning," Machine Learning, vol. 109, no. 2, pp. [1]
- [2] 373-440, Nov. 2019, doi: 10.1007/s10994-019-05855-6.

- [3] G. James, D. Witten, T. Hastie, R. Tibshirani, and J. Taylor, "Unsupervised Learning," An Introduction to Statistical Learning, pp. 503–556, 2023, doi: 10.1007/978-3-031-38747-0_12.
- [4] G. Matteucci, E. Piasini, and D. Zoccolan, "Unsupervised learning of mid-level visual representations," Current Opinion in Neurobiology, vol. 84, p. 102834, Feb. 2024, doi: 10.1016/j.conb.2023.102834.
- [5] E. Hancer, B. Xue, and M. Zhang, "A survey on feature selection approaches for clustering," Artificial Intelligence Review, vol. 53, no. 6, pp. 4519–4545, Jan. 2020, doi: 10.1007/s10462-019-09800-w.
- [6] X. He, K. Zhao, and X. Chu, "AutoML: A survey of the state-of-the-art," Knowledge-Based Systems, vol. 212, p. 106622, Jan. 2021, doi: 10.1016/j.knosys.2020.106622.
- [7] I. D. Mienye and Y. Sun, "A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects," IEEE Access, vol. 10, pp. 99129–99149, 2022, doi: 10.1109/access.2022.3207287.
- [8] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, "A survey on ensemble learning," Frontiers of Computer Science, vol. 14, no. 2, pp. 241–258, Aug. 2019, doi: 10.1007/s11704-019-8208-z.
- [9] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, "A survey of the recent architectures of deep convolutional neural networks," Artificial Intelligence Review, vol. 53, no. 8, pp. 5455–5516, Apr. 2020, doi: 10.1007/s10462-020-09825-6.
- [10] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, "Dynamic Neural Networks: A Survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7436–7456, Nov. 2022, doi: 10.1109/tpami.2021.3117837.
- [11] A. Saxe, S. Nelli, and C. Summerfield, "If deep learning is the answer, what is the question?," Nature Reviews Neuroscience, vol. 22, no. 1, pp. 55–67, Nov. 2020, doi: 10.1038/s41583-020-00395-8.
- [12] R. Miikkulainen et al., "Evolving deep neural networks," Artificial Intelligence in the Age of Neural Networks and Brain Computing, pp. 269–287, 2024, doi: 10.1016/b978-0-323-96104-2.00002-6.
- [13] M. H. Farrell, T. Liang, and S. Misra, "Deep Neural Networks for Estimation and Inference," Econometrica, vol. 89, no. 1, pp. 181–213, 2021, doi: 10.3982/ecta16901.
- [14] J. A. Livezey and J. I. Glaser, "Deep learning approaches for neural decoding across architectures and recording modalities," Briefings in Bioinformatics, vol. 22, no. 2, pp. 1577–1591, Dec. 2020, doi: 10.1093/bib/bbaa355.
- [15] Y. Ji, H. Zhang, Z. Zhang, and M. Liu, "CNN-based encoder-decoder networks for salient object detection: A comprehensive review and recent advances," Information Sciences, vol. 546, pp. 835–857, Feb. 2021, doi: 10.1016/j.ins.2020.09.003.
- [16] C. Chen, D. Han, and J. Wang, "Multimodal Encoder-Decoder Attention Networks for Visual Question Answering," IEEE Access, vol. 8, pp. 35662–35671, 2020, doi: 10.1109/access.2020.2975093.
- [17] K. Han et al., "A Survey on Vision Transformer," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 87–110, Jan. 2023, doi: 10.1109/tpami.2022.3152247.
- [18] E. Arkin, N. Yadikar, X. Xu, A. Aysa, and K. Ubul, "A survey: object detection methods from CNN to transformer," Multimedia Tools and Applications, vol. 82, no. 14, pp. 21353–21383, Oct. 2022, doi: 10.1007/s11042-022-13801-3.
- [19] C. F. G. D. Santos and J. P. Papa, "Avoiding Overfitting: A Survey on Regularization Methods for Convolutional Neural Networks," ACM Computing Surveys, vol. 54, no. 10s, pp. 1–25, Jan. 2022, doi: 10.1145/3510413.
- [20] N. Syam and R. Kaul, "Overfitting and Regularization in Machine Learning Models," Machine Learning and Artificial Intelligence in Marketing and Sales, pp. 65–84, Mar. 2021, doi: 10.1108/978-1-80043-880-420211004.
- [21] B. Bischl et al., "Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges," WIREs Data Mining and Knowledge Discovery, vol. 13, no. 2, Jan. 2023, doi: 10.1002/widm.1484.
- [22] L. Yang and A. Shami, "On hyperparameter optimization of machine learning algorithms: Theory and practice," Neurocomputing, vol. 415, pp. 295–316, Nov. 2020, doi: 10.1016/j.neucom.2020.07.061.
- [23] L. Zhang and X. Gao, "Transfer Adaptation Learning: A Decade Survey," IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 1, pp. 23–44, Jan. 2024, doi: 10.1109/tnnls.2022.3183326.
- [24] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, "Domain Generalization: A Survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–20, 2022, doi: 10.1109/tpami.2022.3195549.

8.2a Seminar	Teaching methods ²⁰	Remarks
8.2b Laboratory	Teaching methods ²¹	Remarks
1. Supervised classification		
Training and tuning a traditional classification method on a small data set.		
Evaluation of accuracy, precision.		
2. Unsupervised classification Applying a popular clustering method to a small data set. Evaluation of clustering quality (i.e. silhouette score for K-Means)	General and individual explanations, individual computer work.	
3. Regression		
Applying a conventional regression model (linear / polynomial) to a small data		

 $^{^{20}}$ Discussions, debates, presentation and/or analysis of papers, solving exercises and problems

²¹Practical demonstration, exercise, experiment

set. Evaluation of resulting model (i.e. coefficient of correlation / determination).			
4. Feature extraction Using various techniques to compute / learn features from text and image-based data. Experimenting with the features using previously-studies classification and regression models.			
5. Deep Networks Designing/training a neural network-based classification model. Performing hyperparameter tuning, cross-validation, evaluation of accuracy.			
6. Encoder/Decoder models Designing a simple generative encoder and decoder, applying it to a text-based data set. Experimenting with various types of texts, evaluating the quality of the generated data.			
7. Transfer learning Fine-tuning of a pretrained model. Adapting a general-purpose pretrained model to a specific problem.			
8.2c Project	Teaching methods ²²	Remarks	
 The project involves developing, training and evaluating a classification/refgression model for solving a real-world problem. Stages: 1. Establishing the finer details of the problem to be solved. Searching for representative data sets. 2. Preprocessing and filtering the data, removal of noise / irrelevant outliers, early experiments with simple classifiers/regressors. 3. Establishing the classification/regression method to be used. 			
Experimenting with and testing candidate methods.			
4. Training the best-suited method, fine tuning, cross-validation and hyperparameter search.			
5. Final evaluation of the model, documentation of the method and results.			
Applications (laboratory / project) references:			
 G. Matteucci, E. Piasini, and D. Zoccolan, "Unsupervised learning of mid-level visual representations," Current Opinion in Neurobiology, vol. 84, p. 102834, Feb. 2024, doi: 10.1016/j.conb.2023.102834. Y. Ji, H. Zhang, Z. Zhang, and M. Liu, "CNN-based encoder-decoder networks for salient object detection: A comprehensive review and recent advances," Information Sciences, vol. 546, pp. 835–857, Feb. 2021, doi: 10.1016/j.ins.2020.09.003. N. Syam and R. Kaul, "Overfitting and Regularization in Machine Learning Models," Machine Learning and Artificial Intelligence in Marketing and Sales, pp. 65–84, Mar. 2021, doi: 10.1108/978-1-80043-880-420211004. 			
[4] J. E. van Engelen and H. H. Hoos, "A survey on semi-supervised learning," Machine Learning, vol. 109, no. 2, pp.			

- 373-440, Nov. 2019, doi: 10.1007/s10994-019-05855-6.
 [5] I. D. Mienye and Y. Sun, "A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects," IEEE Access, vol. 10, pp. 99129-99149, 2022, doi: 10.1109/access.2022.3207287.
- [6] G. James, D. Witten, T. Hastie, R. Tibshirani, and J. Taylor, "Unsupervised Learning," An Introduction to Statistical Learning, pp. 503–556, 2023, doi: 10.1007/978-3-031-38747-0_12.
- Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, "Dynamic Neural Networks: A Survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7436–7456, Nov. 2022, doi: 10.1109/tpami.2021.3117837.
- [8] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, "Domain Generalization: A Survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–20, 2022, doi: 10.1109/tpami.2022.3195549.

[9] C. Chen, D. Han, and J. Wang, "Multimodal Encoder-Decoder Attention Networks for Visual Question Answering," IEEE Access, vol. 8, pp. 35662–35671, 2020, doi: 10.1109/access.2020.2975093.

[10] L. Zhang and X. Gao, "Transfer Adaptation Learning: A Decade Survey," IEEE Transactions on Neural Networks and

²²Case study, demonstration, exercise, error analysis, etc.

Learning Systems, vol. 35, no. 1, pp. 23–44, Jan. 2024, doi: 10.1109/tnnls.2022.3183326.

- [11] T. Jiang, J. L. Gradus, and A. J. Rosellini, "Supervised Machine Learning: A Brief Primer," Behavior Therapy, vol. 51, no. 5, pp. 675–687, Sep. 2020, doi: 10.1016/j.beth.2020.05.002.
- [12] R. Miikkulainen et al., "Evolving deep neural networks," Artificial Intelligence in the Age of Neural Networks and Brain Computing, pp. 269–287, 2024, doi: 10.1016/b978-0-323-96104-2.00002-6.
- [13] C. F. G. D. Santos and J. P. Papa, "Avoiding Overfitting: A Survey on Regularization Methods for Convolutional Neural Networks," ACM Computing Surveys, vol. 54, no. 10s, pp. 1–25, Jan. 2022, doi: 10.1145/3510413.
- [14] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, "A survey of the recent architectures of deep convolutional neural networks," Artificial Intelligence Review, vol. 53, no. 8, pp. 5455–5516, Apr. 2020, doi: 10.1007/s10462-020-09825-6.
- [15] G. Matteucci, E. Piasini, and D. Zoccolan, "Unsupervised learning of mid-level visual representations," Current Opinion in Neurobiology, vol. 84, p. 102834, Feb. 2024, doi: 10.1016/j.conb.2023.102834.
- [16] J. A. Livezey and J. I. Glaser, "Deep learning approaches for neural decoding across architectures and recording modalities," Briefings in Bioinformatics, vol. 22, no. 2, pp. 1577–1591, Dec. 2020, doi: 10.1093/bib/bbaa355.
- [17] A. Saxe, S. Nelli, and C. Summerfield, "If deep learning is the answer, what is the question?," Nature Reviews Neuroscience, vol. 22, no. 1, pp. 55–67, Nov. 2020, doi: 10.1038/s41583-020-00395-8.
- [18] K. Han et al., "A Survey on Vision Transformer," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 87–110, Jan. 2023, doi: 10.1109/tpami.2022.3152247.
- [19] X. He, K. Zhao, and X. Chu, "AutoML: A survey of the state-of-the-art," Knowledge-Based Systems, vol. 212, p. 106622, Jan. 2021, doi: 10.1016/j.knosys.2020.106622.

9. Corroboration of the contents of the subject with the expectations of representatives of the epistemic community, professional associations and representative employers in the field related to the program²³

The course plays an important role in connecting various related courses within the fields of computer science and data science. It serves as a foundational bridge between statistical analysis, programming, and advanced artificial intelligence courses. Understanding the fundamentals of machine learning is essential for students pursuing specializations in data science, computer graphics, natural language processing etc. Its interdisciplinary nature establishes connections with mathematics, statistics, and computer engineering courses, therefore facilitating the understanting of important aspects within the related fields. In terms of the labor market, proficiency in machine learning is increasingly becoming a sought-after skill by employers across multiple industries. As organizations continue to process increasingly-complex data, the ability to implement and optimize machine learning models becomes a valuable asset. Graduates equipped with a solid understanding of the fundamentals of machine learning from data scientists and machine learning engineers to analysts, thus enhancing their competitiveness and employability in the dynamic job market.

10. Evaluation

10. Evaluation				
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods		10.3 Weight in the final grade
10.4a Exam	Acquired theoretical and practical knowledge (quantity, correctness, accuracy)	Periodic tests ²⁴ : Homework: Other activities ²⁵ : Final evaluation:	100%	50% (minimum 5)
10.4b Seminar				
10.4c Laboratory	Knowledge of related techniques, ability to use dedicated frameworks, evaluation and interpretation of results	 Practical demonstrations Oral answers Written questionnaires 		50% (minimum 5)
10.4d Project	The quality of the project and the documentation, ability to defend the project coherently.	 Presentation and/or defence of the project Quality and relevance of answers to questions 		
10.5 Minimum performance standard ²⁶ : grade 5 in the exam and applications (the average between laboratory and project)				

Date of completion, 5 December 2023 Signature of course coordinator, Lect. dr. eng. Marius Gavrilescu

Signature of application instructor, Assist. drd. eng. Codruț-Georgian Artene, Assist. dr. eng. Ștefan Achirei

²³The connection with other subjects, the usefulness of the subject on the labor market

²⁴*The number of tests and the weeks in which they will be held will be specified.*

²⁵Scientific circles, professional competitions, etc.

²⁶The minimum performance standard from the competences grid of the study program is customized to the specifics of the subject, if applicable.

tment,

Director of department, Assoc. prof. dr. eng. Andrei Stan

Date of approval in the department, 7 December 2023