SYLLABUS Academic year 2024-2025

Dean, Prof. dr. eng. Vasile-Ion Manta

1. Program data

1.1 Higher education institution	"Gheorghe Asachi" Technical University of Iași
1.2 Faculty	Automatic Control and Computer Engineering
1.3 Department	Computers
1.4 Field of studies	Computers and Information Technology
1.5 The cycle of studies ¹	Master
1.6 Study program	Artificial Intelligence

2. Subject data

2.1 Name of the subject / Code Deep Learning (Învățare profundă) / AI.106		
2.2 Course coordinator	Lect. dr. eng. Marius Gavrilescu	
2.3 Application instructor Assist. drd. eng. Codrut-Georgian Artene, Lect. dr. eng. Otilia Zvorișteanu		
2.4 Year of study ² 1 2.5 Semester ³	2 2.6 Type of assessment ⁴ colloquium 2.7 Type of subject ⁵	DS

3. Estimated total time of daily activities (hours per semester)

3.1 Number of hours per week	3	3.2 lectures	1	3.3a sem.		3.3b laboratory	2	3.3c p	roject	
3.4 Total hours in curriculum ⁶	42	3.5 lectures	14	3.6a sem.		3.6b laboratory	28	3.6c p	roject	
Distribution of the time fund ⁷							No. ho	ours		
Study by textbook, course support, bibli	ograp	bhy and notes							23	
Additional documentation in the library	, on sp	pecialist electronic	plat	forms and in	the f	ield			40	
Preparation of seminars/labs/projects, assignments, reports and portfolios						20				
Tutorial ⁸										
Examinations ⁹							4			
Other activities:										
3.7 Total hours of individual study ¹⁰ 83										
3.8 Total hours per semester ¹¹ 125										

3.9 Number of credits

4. Prerequisites (where applicable)

4.1 curriculum ¹²	
4.2 competences	

5. Conditions (where applicable)

5.1 conducting the lectures ¹³	Video projector
5.2 conducting the seminar / laboratory / project ¹⁴	 Laboratory room with computers and Internet access The Visual Studio programming environment (academic license)

¹Bachelor / Master

²1-4 for Bachelor's, 1-2 for Master's

³1-8 for Bachelors, 1-3 for Masters

⁴*Exam, colloquium or VP A/R – from the curriculum*

⁵*DF* - fundamental subject, *DID* - subject in the field, *DS* - specialized subject or *DC* - complementary subject - from the education plan

⁶It is equal to 14 weeksx number of hours from point 3.1 (similar for 3.5, 3.6abc)

5

⁷*The lines below refer to the individual study; the total is completed at point 3.7.*

⁸Between 7 and 14 hours

⁹Between 2 and 6 hours

¹⁰*The sum of the values on the previous lines, which refer to the individual study.*

¹⁴Computing technique, software packages, experimental stands, etc.

¹¹The sum of the number of hours of direct teaching activity (3.4) and the number of hours of individual study (3.7); must be equal to the number of credits allocated to the subject (point 3.9)x 25 hours per credit.

¹²Mention the subjects that must be passed previously or equivalent

¹³Blackboard, video projector, flipchart, specific teaching materials, etc.

6. Sp	ecific co	ompetences accumulated	
		Number of credits assigned to the subject ¹⁶ : 5	Distribution of credits per competences ¹⁷
Pr ofe	CP1	Knowledge of advanced concepts of computer science and information technology and the ability to work with these concepts.	1
ssi	CP2	Scientific and practical research in the field of artificial intelligence.	0.5
on	CP3	Design and development of artificial intelligence systems.	1
al	CP4	Problem solving using artificial intelligence methods and techniques.	1
co	CP5	Utilization of artificial intelligence tools and technologies.	1
m	CP6		
pet	CPS1		
ces	CPS2		
Tr an sve	CT1	Legislation compliant application of the intellectual property rights and of the principles, norms and values of the professional ethics code within their own strategies for rigorous, effective and responsible work.	0.1
rsa l co	CT2	Application of communication techniques and effective group work; developing empathic interpersonal communication skills and assuming leadership roles/functions in a multi-specialized team.	0.2
m pet	CT3	Creating opportunities for continuous training and the effective utilization of learning resources and techniques for personal development.	0.2
en ces	CTS		

7. Objectives of the subject (resulting from the grid of specific competences accumulated)

7.1 General objective of the subject	Providing students with comprehensive knowledge of complex machine learning methods, focusing on deep neural networks, their design, tuning, applicability and use scenarios. The lecture approaches the topic of deep machine learning models in an applied manner, considering the various aspects involved when implementing such models in popular computational frameworks. Strongly-related topics such as dataset management and computational models for deep neural networks are also considered.
7.2 Specific objectives	 Provide a clear understanding of fundamentals and key concepts, as well as the importance of deep learning. Study computational models, tensor processing and the use of optimized data structures within deep computational frameworks Understanding the importance and pitfalls of managing data: splitting, preprocessing, loading, computational efficiency, using data for training, tuning and testing purposes. Studying various types of deep neural network layers and architectures: convolutional and recurrent networks, attention-based models, models adapted to time-series data. Applying sequence-to-sequence and transformer models for complex classification and generative problems.

8. Contents

8.1 Course ¹⁸	Teaching methods ¹⁹	Remarks
1. Introduction		
Definitions, key concepts; importance of deep learning; classic neural networks		
vs deep neural networks; overview of popular deep learning frameworks:	Lectures via Powerpoint	
Pytorch, TensorFlow + Keras.	presentations,	
	explanations and	
2. Tensor-based Computing	discussions	
Definitions, tensor properties; common tensor operations: addition,		
multiplication, broadcasting, reshaping, slicing; tensor differentiation;		

¹⁵Competencies from the G1 and G1bis Grids of the study program, adapted to the specifics of the subject, for which credits are allocated (www.rncis.ro or the faculty website) ¹⁶From the education plan

¹⁷The credits allocated to the subject are distributed on professional and transversal competences according to the specifics of the subject ¹⁸Chapter and paragraph headings

¹⁹Exposition, lecture, blackboard presentation of the studied issue, use of video projector, discussions with students (for each chapter, if applicable)

implementations in Pytorch and TensorFlow.	
3 Static and Dynamic Models	
Definitions differences: computational flow graphs: tensor-based models in	
deep learning static models in TensorFlow dynamic models in Pytorch	
deep fearming, state models in Tensori low, dynamie models in Tytoren.	
4. Data Set Management	
Data sets of different types and data loaders; data preprocessing techniques; data	
splitting techniques: random splitting, time-based splitting, spatial-based	
splitting; handling unbalanced data sets; data augmentation methods; data	
batching: batch size and computational efficiency.	
5. Convolutional and Recurrent Layers	
Brief recap of fundamentals; forward and back-propagation through	
convolutional and recurrent layers; back propagation through time; feature	
learning in convolutional and recurrent layers; implementing recurrency in deep-	
learning frameworks; improvements on traditional recurrency: memory cells,	
gates, filters. Implementation specifics in Pytorch and TensorFlow.	
6. Time Series Models	
Enclosed and the series temporal dependence, seesenality, non	
stationarity, irregularity, autoragrassive and maying average models, temporal	
stationality, integriality, autoregressive and moving average models, temporal	
Time series Danse Encoders (TiDE)	
Thic-series Dense Encoders (TIDE).	
7. Seq2Seq Attention Models	
Properties and specifics of attention and self-attention layers; attention-based	
learning in encoders and decoders; implementing traditional sequence models	
and transformer heads; CPU vs GPU computation in deep learning frameworks.	
Course references:	

- [1] C. F. G. D. Santos and J. P. Papa, "Avoiding Overfitting: A Survey on Regularization Methods for Convolutional Neural Networks," ACM Computing Surveys, vol. 54, no. 10s, pp. 1–25, Jan. 2022, doi: 10.1145/3510413.
- [2] J. E. van Engelen and H. H. Hoos, "A survey on semi-supervised learning," Machine Learning, vol. 109, no. 2, pp. 373–440, Nov. 2019, doi: 10.1007/s10994-019-05855-6.
- [3] M. H. Farrell, T. Liang, and S. Misra, "Deep Neural Networks for Estimation and Inference," Econometrica, vol. 89, no. 1, pp. 181–213, 2021, doi: 10.3982/ecta16901.
- [4] C. Chen, D. Han, and J. Wang, "Multimodal Encoder-Decoder Attention Networks for Visual Question Answering," IEEE Access, vol. 8, pp. 35662–35671, 2020, doi: 10.1109/access.2020.2975093.
- [5] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, "Domain Generalization: A Survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–20, 2022, doi: 10.1109/tpami.2022.3195549.
- [6] A. Saxe, S. Nelli, and C. Summerfield, "If deep learning is the answer, what is the question?," Nature Reviews Neuroscience, vol. 22, no. 1, pp. 55–67, Nov. 2020, doi: 10.1038/s41583-020-00395-8.
- [7] K. Han et al., "A Survey on Vision Transformer," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 87–110, Jan. 2023, doi: 10.1109/tpami.2022.3152247.
- [8] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, "A survey on ensemble learning," Frontiers of Computer Science, vol. 14, no. 2, pp. 241–258, Aug. 2019, doi: 10.1007/s11704-019-8208-z.
- [9] R. Miikkulainen et al., "Evolving deep neural networks," Artificial Intelligence in the Age of Neural Networks and Brain Computing, pp. 269–287, 2024, doi: 10.1016/b978-0-323-96104-2.00002-6.
- [10] J. A. Livezey and J. I. Glaser, "Deep learning approaches for neural decoding across architectures and recording modalities," Briefings in Bioinformatics, vol. 22, no. 2, pp. 1577–1591, Dec. 2020, doi: 10.1093/bib/bbaa355.
- [11] Y. Ji, H. Zhang, Z. Zhang, and M. Liu, "CNN-based encoder-decoder networks for salient object detection: A comprehensive review and recent advances," Information Sciences, vol. 546, pp. 835–857, Feb. 2021, doi: 10.1016/j.ins.2020.09.003.
- [12] L. Zhang and X. Gao, "Transfer Adaptation Learning: A Decade Survey," IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 1, pp. 23–44, Jan. 2024, doi: 10.1109/tnnls.2022.3183326.
- [13] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, "Dynamic Neural Networks: A Survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7436–7456, Nov. 2022, doi: 10.1109/tpami.2021.3117837.
- [14] B. Bischl et al., "Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges," WIREs Data Mining and Knowledge Discovery, vol. 13, no. 2, Jan. 2023, doi: 10.1002/widm.1484.
- [15] E. Hancer, B. Xue, and M. Zhang, "A survey on feature selection approaches for clustering," Artificial Intelligence Review, vol. 53, no. 6, pp. 4519–4545, Jan. 2020, doi: 10.1007/s10462-019-09800-w.
- [16] X. He, K. Zhao, and X. Chu, "AutoML: A survey of the state-of-the-art," Knowledge-Based Systems, vol. 212, p. 106622, Jan. 2021, doi: 10.1016/j.knosys.2020.106622.

- [17] G. James, D. Witten, T. Hastie, R. Tibshirani, and J. Taylor, "Unsupervised Learning," An Introduction to Statistical Learning, pp. 503–556, 2023, doi: 10.1007/978-3-031-38747-0_12.
- [18] I. D. Mienye and Y. Sun, "A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects," IEEE Access, vol. 10, pp. 99129–99149, 2022, doi: 10.1109/access.2022.3207287.
- [19] G. Matteucci, E. Piasini, and D. Zoccolan, "Unsupervised learning of mid-level visual representations," Current Opinion in Neurobiology, vol. 84, p. 102834, Feb. 2024, doi: 10.1016/j.conb.2023.102834.
- [20] T. Jiang, J. L. Gradus, and A. J. Rosellini, "Supervised Machine Learning: A Brief Primer," Behavior Therapy, vol. 51, no. 5, pp. 675–687, Sep. 2020, doi: 10.1016/j.beth.2020.05.002.

8.2a Seminar	Teaching methods ²⁰	Remarks
8.2b Laboratory	Teaching methods ²¹	Remarks
 1. Fundamentals of Neural Network Implementation Implementation of a simple neural network in PyTorch and/or TensorFlow. Designing, training, fine tuning of the neural network using a simple data set. 2. Deep Learning Frameworks 		
Comparison between PyTorch and TensorFlow, understanding the unique features of each framework using simple neural networks.		
3. Tensor Operations and Manipulation Various exercises with tensors in PyTorch/TensorFlow, involving addition, multiplication, broadcasting, reshaping, splicing. Tensor differentiation. Application of tensor computing on a simple problem.		
4. Tensors in Deep Learning Implementation of a neural network from scratch using tensor computation and differentiation. Using optimized tensor operations to enhance model performance and efficiency.		
5. Static Models in TensorFlow Implementation of a simple static computational flow graph. Building and training static models. Deploying static models within sessions.		
6. Dynamic Models in PyTorch Building dynamic computational graphs, modifying and adapting dynamic models on-the-fly. Studying the flexibility and advantages of dynamic models for simple classification problems.	General and individual explanations, individual computer work.	
7. Data Preprocessing and Splitting Strategies Exploring various data types and data loaders. Various exercises concerning data preprocessing: handling missing values, standardizing features, various transformations. Working with data splitting strategies: random splitting, time- based and spatial-based splitting. Preparing data sets for model training.		
8. Unbalanced Data Sets and Data Augmentation Handling class imbalance using various techniques: oversampling, undersampling, synthetic data generation. Augmentation of image-based data sets using geometric transformations: rotation, flipping, scaling. Evaluation of the improvement gained by augmentation.		
9. Implementation of Convolutional Layers Exercises using simple convolutional neural networks. Implementation of forward and back-propagation through convolutional layers. Study of hierarchical feature learning in convolutional layers. Applications for image classification.		
10. Implementation of Recurrent Layers Experimentation with simple recurrent layers. Backpropagation thought time, implementation specifics in PyTorch/TensorFlow. Improving performance using filters, gates and memory cells. Applications for text processing.		

²⁰Discussions, debates, presentation and/or analysis of papers, solving exercises and problems

²¹*Practical demonstration, exercise, experiment*

11. Time Series Analysis, Traditional Time-series Models Exercises with time-series data – exploration of particular characteristics of time-series: temporal dependence, seasonality, non-stationarity and irregularity. Implementation of classical time-series models: autoregressive, moving average models.		
12. Advanced Time-series Models Applications using TiDE (Time-series Dense Encoders) for processing time- series data. Introductory exercises using temporal convolutional networks. Practical applications using data sets from various domains: finance, markets, climatology, forecasting.		
13. Seq2Seq Models Applications using sequence-to-sequence models with/without attention mechanisms. Designing a simple Seq2Seq model in PyTorch/TensorFlow. Exercises for machine translation tasks.		
14. Performance in Deep Learning Comparison of the performance of GPU vs CPU implementations of various deep neural networks. Improving performance when training convolutional, recurrent and/or transformer heads using various data sets.		
8.2c Project	Teaching methods ²²	Remarks

Applications (laboratory / project) references:

- [1] G. James, D. Witten, T. Hastie, R. Tibshirani, and J. Taylor, "Unsupervised Learning," An Introduction to Statistical Learning, pp. 503–556, 2023, doi: 10.1007/978-3-031-38747-0_12.
- [2] J. E. van Engelen and H. H. Hoos, "A survey on semi-supervised learning," Machine Learning, vol. 109, no. 2, pp. 373–440, Nov. 2019, doi: 10.1007/s10994-019-05855-6.
- [3] Y. Ji, H. Zhang, Z. Zhang, and M. Liu, "CNN-based encoder-decoder networks for salient object detection: A comprehensive review and recent advances," Information Sciences, vol. 546, pp. 835–857, Feb. 2021, doi: 10.1016/j.ins.2020.09.003.
- [4] X. He, K. Zhao, and X. Chu, "AutoML: A survey of the state-of-the-art," Knowledge-Based Systems, vol. 212, p. 106622, Jan. 2021, doi: 10.1016/j.knosys.2020.106622.
- [5] E. Hancer, B. Xue, and M. Zhang, "A survey on feature selection approaches for clustering," Artificial Intelligence Review, vol. 53, no. 6, pp. 4519–4545, Jan. 2020, doi: 10.1007/s10462-019-09800-w.
- [6] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, "Dynamic Neural Networks: A Survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7436–7456, Nov. 2022, doi: 10.1109/tpami.2021.3117837.
- [7] A. Saxe, S. Nelli, and C. Summerfield, "If deep learning is the answer, what is the question?," Nature Reviews Neuroscience, vol. 22, no. 1, pp. 55–67, Nov. 2020, doi: 10.1038/s41583-020-00395-8.
- [8] R. Miikkulainen et al., "Evolving deep neural networks," Artificial Intelligence in the Age of Neural Networks and Brain Computing, pp. 269–287, 2024, doi: 10.1016/b978-0-323-96104-2.00002-6.
- [9] M. H. Farrell, T. Liang, and S. Misra, "Deep Neural Networks for Estimation and Inference," Econometrica, vol. 89, no. 1, pp. 181–213, 2021, doi: 10.3982/ecta16901.
- [10] J. A. Livezey and J. I. Glaser, "Deep learning approaches for neural decoding across architectures and recording modalities," Briefings in Bioinformatics, vol. 22, no. 2, pp. 1577–1591, Dec. 2020, doi: 10.1093/bib/bbaa355.
- [11] C. Chen, D. Han, and J. Wang, "Multimodal Encoder-Decoder Attention Networks for Visual Question Answering," IEEE Access, vol. 8, pp. 35662–35671, 2020, doi: 10.1109/access.2020.2975093.
- [12] K. Han et al., "A Survey on Vision Transformer," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 87–110, Jan. 2023, doi: 10.1109/tpami.2022.3152247.
- [13] C. F. G. D. Santos and J. P. Papa, "Avoiding Overfitting: A Survey on Regularization Methods for Convolutional Neural Networks," ACM Computing Surveys, vol. 54, no. 10s, pp. 1–25, Jan. 2022, doi: 10.1145/3510413.
- [14] N. Syam and R. Kaul, "Overfitting and Regularization in Machine Learning Models," Machine Learning and Artificial Intelligence in Marketing and Sales, pp. 65–84, Mar. 2021, doi: 10.1108/978-1-80043-880-420211004.
- [15] B. Bischl et al., "Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges," WIREs Data Mining and Knowledge Discovery, vol. 13, no. 2, Jan. 2023, doi: 10.1002/widm.1484.

[16] L. Zhang and X. Gao, "Transfer Adaptation Learning: A Decade Survey," IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 1, pp. 23–44, Jan. 2024, doi: 10.1109/tnnls.2022.3183326.

[17] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, "Domain Generalization: A Survey," IEEE Transactions on

²²Case study, demonstration, exercise, error analysis, etc.

9. Corroboration of the contents of the subject with the expectations of representatives of the epistemic community, professional associations and representative employers in the field related to the program²³

The course serves as an important means of connecting various related courses in the fields of artificial intelligence and computer science. It is strongly linked to fundamental topics such as machine learning, neural networks, and data science. Furthermore, it forms a symbiotic relationship with courses such as computer vision, natural language processing, and reinforcement learning, where the principles of deep learning have multiple practical applications. Additionally, the knowledge and skills gained from this course have significant applicability in the professional landscape. Its practical utility in solving real-world problems, optimizing processes, and enhancing decision-making makes the techniques studies within this course sought-after in the labor market. As industries increasingly incorporate automation and data-driven solutions, professionals equipped with a deep understanding of neural networks and deep learning techniques become essential contributors to innovation and efficiency, making this course both intellectually stimulating and advantageous for future career prospects.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Eval	10.3 Weight in the final grade			
10.4a Exam	Acquired theoretical and practical knowledge (quantity, correctness, accuracy)	Periodic tests ²⁴ : Homework: Other activities ²⁵ : Final evaluation:	100%	50% (minimum 5)		
10.4b Seminar						
10.4c Laboratory	Knowledge of related techniques, ability to use dedicated frameworks, evaluation and interpretation of results	 Practical demons Oral answers Written questions 	strations naires	50% (minimum 5)		
10.4d Project						
10.5 Minimum per	10.5 Minimum performance standard ²⁶ : grade 5 in the exam and applications					

Date of completion, 5 December 2023 Signature of course coordinator, Lect. dr. eng. Marius Gavrilescu Signature of application instructor, Assist. drd. eng. Codruț-Georgian Artene,

Lect. dr. eng. Otilia Zvorișteanu

Date of approval in the department, 7 December 2023 Director of department, Assoc. prof. dr. eng. Andrei Stan

²³The connection with other subjects, the usefulness of the subject on the labor market

²⁴*The number of tests and the weeks in which they will be held will be specified.*

²⁵Scientific circles, professional competitions, etc.

²⁶The minimum performance standard from the competences grid of the study program is customized to the specifics of the subject, if applicable.