SYLLABUS Academic year 2025-2026

Dean, Prof. dr. eng. Vasile-Ion Manta

1. Program data

1.1.1. ogrum uutu	
1.1 Higher education institution	"Gheorghe Asachi" Technical University of Iași
1.2 Faculty	Automatic Control and Computer Engineering
1.3 Department	Computers
1.4 Field of studies	Computers and Information Technology
1.5 The cycle of studies ¹	Master
1.6 Study program	Artificial Intelligence

2. Subject data

2.1 Name of the subject	ct / Co	de	Intelligent Systems (Sisteme inteligente) / AI.110				
2.2 Course coordinator			prof. dr. eng. Florina Ungureanu				
2.3 Application instruc	ctor		s.l. dr	. eng. Tudor Popovici			
2.4 Year of study ²	1	2.5 Semester ³	1	2.6 Type of assessment ⁴	exam	2.7 Type of subject ⁵	DS

3. Estimated total time of daily activities (hours per semester)

3.1 Number of hours per week	2	3.2 lectures	1	3.3a sem.		3.3b laboratory	3.3c p	roject	1
3.4 Total hours in curriculum ⁶	28	3.5 lectures	7	3.6a sem.		3.6b laboratory	3.6c p	roject	7
Distribution of the time fund ⁷								No. ho	ours
Study by textbook, course support, bi	bliograp	bhy and notes						30	
Additional documentation in the library, on specialist electronic platforms and in the field					20				
Preparation of seminars/labs/projects, assignments, reports and portfolios						20			
Tutorial ⁸					-				
Examinations ⁹						2			
Other activities:					-				
3.7 Total hours of individual study ¹⁰	72								

3.7 Total hours of individual study ¹⁰	72
3.8 Total hours per semester ¹¹	100
3.9 Number of credits	4

4. Prerequisites (where applicable)

4.1 curriculum ¹²	
4.2 competences	

5. Conditions (where applicable)

	 Laboratory room with computers and Internet access
	Laboratory equipment for embedded computer
	development (power sources, multimeters, oscilloscopes,
5.2 conducting the project ^{13}	signal generators, development boards and extensions,
	embedded mobile platforms with sensors: cube robots,
	scaled model cars with proximity sensors, laser scanners
	and video cameras)

¹Bachelor / Master

²1-4 for Bachelor's, 1-2 for Master's

³1-8 for Bachelors, 1-3 for Masters

⁴ Exam, colloquium or VP A/R – from the curriculum

⁵DF - fundamental subject, DID - subject in the field, DS - specialized subject or DC - complementary subject - from the education plan

⁶It is equal to 14 weeksx number of hours from point 3.1 (similar for 3.5, 3.6abc)

⁷*The lines below refer to the individual study; the total is completed at point 3.7.*

⁸Between 7 and 14 hours

⁹Between 2 and 6 hours

¹⁰The sum of the values on the previous lines, which refer to the individual study.

¹¹The sum of the number of hours of direct teaching activity (3.4) and the number of hours of individual study (3.7); must be equal to the number of credits allocated to the subject (point 3.9)x 25 hours per credit.

¹²Mention the subjects that must be passed previously or equivalent

¹³Computing technique, software packages, experimental stands, etc.

• Open-source or free IDEs that allow students to develop code in C, C++, Python and Micropython (Visual Studio
Code, Visual Studio Community Edition, PyCharm Community Edition)

6. Specific competences accumulated¹⁴

		Number of credits assigned to the subject ¹⁵ : 4	Distribution of credits per competences ¹⁶
	CP1	Knowledge of advanced concepts of computer science and information technology and the ability to work with these concepts.	0.7
Profes	CP2	Scientific and practical research in the field of intelligent systems.	0.7
sional compe	CP3	Problem solving using artificial intelligence methods and techniques in embedded systems and groups of embedded systems.	1.6
tences	CP4	Design and development of embedded artificial intelligence systems.	
	CP5	Usage of artificial intelligence tools and technologies.	0.7
	CPS1		
	CT1	Legislation compliant application of the intellectual property rights and of the principles, norms and values of the professional ethics code within their own strategies for rigorous, effective and responsible work.	0.1
Trans versal compe	CT2	Application of communication techniques and effective group work; developing emphatic interpersonal communication skills and assuming leadership roles/functions in a multi-specialized team.	0.1
tences	CT3	Creating opportunities for continuous training and the effective usage of learning resources and techniques for personal development.	0.1
	CTS		

7. Objectives of the subject (resulting from the grid of specific competences accumulated)

7.1 General objective of the subject	A better understanding of the AI methods that are used in complex intelligent systems by designing systems as models that can be tested in simulation environments and then deployed on real devices with ease.
7.2 Specific objectives	The project aims to achieve a hands-on approach for designing intelligent and interactive systems by using tools and frameworks like ROS2 (Robot Operating Systems) that allow not only to model and build complex and distributed intelligent systems, but also to train and test the architectures in the companion simulation environments Gazebo.

8. Contents

8.1 Course	Teaching methods ¹⁷	Remarks
	Powerpoint	
Week 1: Introduction.	presentations, answers to	
- Classification of intelligent systems	questions, explanations,	
- Intelligent system modelling	case-studies,	
- Development methods	simulation presentation	
- Introduction to ROS infrastructure and developments in ROS2		
Week 3: ROS2 communication model		
- Decentralised architecture		
- Messages, Topics and the Publish/Subscribe approach for data flow		
- Services and Actions as interaction mechanisms		
- ROS Master node: orchestration		
Week 5: ROS2 Multi-Master		
- Interaction between independent ROS2 masters		
- Autonomous vs. Supervised design choices		
- Logistic warehouse case study		
Week 7: ROS2 SysOps/DevOps		
- Docker as a environment for developing, maintaining and reproducing		
intelligent systems		

¹⁴Competencies from the G1 and G1bis Grids of the study program, adapted to the specifics of the subject, for which credits are allocated (www.rncis.ro or the faculty website) ¹⁵From the education plan ¹⁶The credits allocated to the subject are distributed on professional and transversal competences according to the specifics of the subject

¹⁷*Presentations, demonstrations, exercises, etc.*

- Dependency management and Host OS isolation	
- ROS package management: from repository and building from sources	
Week 9: ROS2 Remote monitoring, diagnostic and control	
- ros_bridge as a flexible and secure extension to web interfaces	
- ros_brige authentication	
- simple web-UI for monitoring the ROS2 masters	
Week 11: Using and integrating ROS2 community packages	
- node configuration and starting - namespaces	
- launch files and scripts	
- integration testing in Gazebo simulation environment	
- using sensors and actuator models in simulation	
- Pixy2 case study vs ZED	
Week 13: ROS2 and complex sensors (sensor fusion, LiDARs and Depth	
cameras)	
- Indoor localization solutions	
- Using LiDARs for SLAM (simulation and practice) and collision avoidance	
- Using camera for obstacle detection, classification and advanced collision	
avoidance	
- Interaction through mixed-reality devices with intelligent systems	

Course references:

- 1. Francisco Martín Rico, *A Concise Introduction to Robot Programming with ROS2*, ISBN 9781032264653, 264pp, 2023, Chapman & Hall
- 2. <u>https://github.com/fmrico/book_ros2</u>

8.2c Project	Teaching methods ¹⁸	Remarks
The project aims to design the software components for an intelligent		
system (e.g. a fleet of autonomous model cars with environment perception		
sensors) as ROS nodes developed in C++/Python/Matlab-Simulink to		
achieve a collaborative goal (e.g. formation driving on a track). The initial		
task include building and using models for the mechanical and hardware		
components so that the developed software can be tested in the simulation		
environment and after validation, deployed on the actual hardware for		
verification.	General and individual	
	explanations, individual/	
Week 2: Introduction, project plan and milestones, team forming, role	team work	
assignment within teams		
Week 4: ROS infrastructure and communication model		
Week 6: Gazebo simulation environment, system modelling		
Week 8: Training AI in simulated environment and data synthesis		
Week 10: Evaluating interactions between independent intelligent systems		
Week 12: Deployment of the system on actual hardware and testing		
Week 14: Final presentation		
		1

Project references: see course references, up to date documentation for the actual selected platforms, tutorials

- 1. Marco Matteo Bassa, A very informal journey through ROS 2: patterns, anti-patterns, frameworks and best practices, 125pp, ISBN 9783000746857, 2023
- 2. Francisco Martín Rico, *A Concise Introduction to Robot Programming with ROS2*, ISBN 9781032264653, 264pp, 2023, Chapman & Hall
- 3. <u>https://github.com/fmrico/book_ros2</u>

9. Corroboration of the contents of the subject with the expectations of representatives of the epistemic community, professional associations and representative employers in the field related to the program¹⁹

ROS represents a modern infrastructure relevant in research and industry for building complex intelligent systems.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in the final grade
10.4a Exam	Acquired practical knowledge (quantity, correctness, accuracy)	Written theoretical test	30% (minimum 5)

¹⁸Case study, demonstration, exercise, error analysis, etc.

¹⁹The connection with other subjects, the usefulness of the subject on the labor market

10.4d Project	The quality of the completed project, the correctness of the project documentation, and the justification of the chosen solutions	•	Final project demonstration, test validation Milestones Discussions with students	70% (minimum 5)		
10.5 Minimum performance standard ²⁰ : grade 5 in the exam and project work						

Date of completion, 4 December 2023 Signature of course coordinator, prof. dr. eng. Florina Ungureanu

Signature of application instructor, s.l.dr.eng. Tudor Popovici

Date of approval in the department, 7 December 2023 Director of department, Assoc. prof. dr. eng. Andrei Stan

²⁰The minimum performance standard from the competences grid of the study program is customized to the specifics of the subject, if applicable.