SYLLABUS Academic year 2024-2025

Dean, Prof. Dr. Eng. Vasile-Ion Manta

1. Program data

1. I Togram data	
1.1 Higher education institution	"Gheorghe Asachi" Technical University of Iași
1.2 Faculty	Automatic Control and Computer Engineering
1.3 Department	Computers
1.4 Field of studies	Computers and Information Technology
1.5 The cycle of studies ¹	Master
1.6 Study program	Artificial Intelligence

2. Subject data

2.1 Name of the subject / Code				Optimization and Constraint Satisfaction (Optimizare și satisfacerea			
			cons	constrângerilor) / AI.111			
2.2 Course coordinate	Course coordinator Lecturer Dr. Eng. Elena Niculina Dragoi			Lecturer Dr. Eng. Elena Niculina Dragoi			
2.3 Application instructor Lecturer Dr. Eng. Ele			turer	Dr. Eng. Elena Niculina Dragoi			
2.4 Year of study ²	1	2.5 Semester ³		1	2.6 Type of assessment ⁴ Colloquium 2.7 Type of subject ⁵	DA	

3. Estimated total time of daily activities (hours per semester)

3.1 Number of hours per week		3.2 lectures	1	3.3a sem.		3.3b laboratory	1	3.3c p	roject	
3.4 Total hours in curriculum ⁶	28	3.5 lectures	14	3.6a sem.		3.6b laboratory	14	3.6c p	roject	
Distribution of the time fund ⁷							No. ho	ours		
Study by textbook, course support, bib	liograp	bhy and notes							20	
Additional documentation in the librar	y, on s	pecialist electronic	: platf	forms and in	the f	ield			28	
Preparation of seminars/labs/projects, assignments, reports and portfolios						20				
Tutorial ⁸										
Examinations ⁹						4				
Other activities:										
3.7 Total hours of individual study ¹⁰	72									
20T (11)	100									

3.8 Total hours per semester ¹¹	100
3.9 Number of credits	4

4. Prerequisites (where applicable)

4.1 curriculum ¹²	
4.2 competences	

5. Conditions (where applicable)

5.1 conducting the lectures ¹³	Blackboard, video projector
5.2 conducting the seminar / laboratory / project ¹⁴	• Laboratory room with computers and Internet access
	 Python (free/academic license); Visual Studio

6. Specific competences accumulated¹⁵

			Distribution of				
		Number of credits assigned to the subject ¹⁶ : 4	credits per competences ¹⁷				
	CP1	Knowledge of advanced concepts of computer science and information technology	0.8				
	CFI	and the ability to work with these concepts.					
la s	CP2	Scientific and practical research in the field of optimization.	0.7				
ons	CP3	Design and development of optimization algorithms.	0.8				
ssi ete	CP4	Problem solving using methods and techniques specific to optimization.	0.8				
Professional competences	CP5	Utilization of tools and technologies.	0.4				
P 3	CP6						
	CPS1						
	CPS2						
I	011	Legislation compliant application of the intellectual property rights and of the	0.2				
Transversal competences	CT1	principles, norms and values of the professional ethics code within their own strategies for rigorous, effective and responsible work.					
sve		Application of communication techniques and effective group work; developing	0.2				
np	CT2	empathic interpersonal communication skills and assuming leadership roles/functions	0.2				
Tr	CT2	in a multi-specialized team.					
		in a multi-specialized team.					

CT3	Creating opportunities for continuous training and the effective utilization of learning resources and techniques for personal development.	0.1
CTS		

7.1 General objective of the subject	The course is designed to provide students with the skills and knowledge necessary applying optimization techniques to a variety of systems.
7.2 Specific objectives	 The goal of this course is to familiarize the students with the general concepts and to provide the basis that allow their applications to specific use-cases. Specific objectives focus on: Understanding the types of problems and the main optimizations strategies associated with them Identifying the specific alterations that must be performed to a general optimization algorithm to fit to the characteristics of the problem being solved (local/global search; constraint handling, etc). Learning to develop optimization applications in Python/ Visual Studio. Designing new optimization algorithms.

7. Objectives of the subject (resulting from the grid of specific competences accumulated)

8. Contents

8.1 Course ¹⁸	Teaching methods ¹⁹	Remarks
1. Introduction to optimization methods (4 hours):	reaching methods	ixemarks
Overview of optimization methods and applications in artificial intelligence,		
Types of optimization problems. Classification of optimization methods.		
General Principles (function evaluations, noise, curse of dimensionality, stop		
criteria). Comparison of optimization methods in terms of efficiency, accuracy,		
and robustness. Performance measurement metrics and convergence		
measurement		
	The presentation of	
2. Deterministic and stochastic optimization (2 hours)	course-related materials	
Deterministic-Steepest descent (with and without noise). Deterministic/exact-	using video-projected	
Branch & Bound. Random Search (simple, localized, enhanced). Comparison	PowerPoint slides.	
between the 3 versions for a use-case		
	Drawing connections	
3. Evolutionary and Biologically-inspired optimization (4 hours)	with concepts from	
Overview of evolutionary algorithms and of biologically-inspired optimization (4 hours)	adjacent disciplines	
Common terminology and sources of inspiration. Genetic algorithms:	from both undergraduate	
representation, selection, crossover, mutation, and fitness evaluation. Differential	and graduate programs	
Evolution: differentiation, adaptation, and recombination. Ant Colony	of study, and verifying	
Optimization: ants, pheromones, colony, and objective function. Artificial Fish	how the novel elements	
Swarm: fish, school, behavior, and fitness	introduced are	
	assimilated.	
4. Constraint Satisfaction Problems (4 hours)		
Overview of the different techniques used to solve CSPs. Characteristics of	Discussing the presented	
CSPs, such as consistency and completeness. Backtracking algorithms, search	methods using	
trees, breadth-first search, and A^* . Arc consistency and path consistency	numerous case studies	
algorithms. Constraint propagation algorithms, including constraint-based	and relevant examples.	
reasoning and the forward checking algorithm. Local search algorithms for		
CSPs, including hill climbing, simulated annealing, and tabu search. Hybrid		
methods for solving CSPs, including the hybrid backtracking algorithm, the		
constraint-based local search algorithm, and the hybrid constraint propagation		
and local search algorithm		
TOTAL: 14 hours		
Course references:		

Course references:

- 1. Törn, Aimo, and Antanas Žilinskas. Global Optimization. Vol. 350: Springer, 1989.
- 2. Weise, Thomas. "Global Optimization Algorithms-Theory and Application." Self-Published Thomas Weise 361 (2009).
- 3. Andréasson, Niclas, Anton Evgrafov, and Michael Patriksson. An Introduction to Continuous Optimization: Foundations and Fundamental Algorithms: Courier Dover Publications, 2020.
- 4. Diwekar, Urmila M. Introduction to Applied Optimization. Vol. 22: Springer Nature, 2020.
- 5. Yang, Xin-She. Nature-Inspired Optimization Algorithms: Academic Press, 2020.
- 6. Jin, Yaochu, Handing Wang, and Chaoli Sun. Data-Driven Evolutionary Optimization: Springer, 2021.
- 7. Martins, Joaquim RRA, and Andrew Ning. Engineering Design Optimization: Cambridge University Press, 2021.
- 8. Chong, Edwin KP, Wu-Sheng Lu, and Stanislaw H Zak. An Introduction to Optimization: With Applications to Machine Learning: John Wiley & Sons, 2023.

8.2a Seminar	Teaching methods ²⁰	Remarks	
8.2b Laboratory	Teaching methods ²¹	Remarks	
 The main optimization tools and frameworks (2h) Simple use case- unconstraint problem (2h) Branch &Bound and Random Search algorithms. (2h) Genetic Algorithms and Differential Evolution (2 hr) Ant Colony Optimization variants. (2h) Backtracking algorithms for CSP (2h) Hill Climbing and hybrid methods for CSP. (2h) TOTAL: 14 hours 	General and individual explanations, individual computer work		
8.2c Project	Teaching methods ²²	Remarks	
Applications references:			
See "Course references"			

See "Course references

9. Corroboration of the contents of the subject with the expectations of representatives of the epistemic community, professional associations and representative employers in the field related to the program²³

- The course content was created in accordance with the syllabuses of related courses from prestigious international universities.
- The significance of the course's theoretical and practical concepts is emphasized by its various applications in areas • varying from ML to classical engineering.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods		10.3 Weight in the final grade
10.4a Colloquium	Acquired theoretical and practical knowledge (quantity, correctness, accuracy)	Periodic tests ²⁴ : Homework: Other activities ²⁵ : Final evaluation: Written test, with problems and questions related to some study cases	100%	 50% (minimum 5)
10.4b Seminar			•	
10.4c Laboratory	Knowledge of equipment, how to use specific tools; evaluation of tools or achievements, processing and interpretation of results	 Written questionnaire Oral presentation Laboratory reports Practical demonstration 		50% (minimum 5)
10.4d Project				
10.5 Minimum per	formance standard ²⁶ : grade 5 in th	ne colloquium and applicat	ions.	

mance standard . grade 5 m me

> Date of completion, 4 December 2023

Signature of course coordinator,

Signature of application instructor, Lecturer Dr. Eng. Elena Niculina Dragoi Lecturer Dr. Eng. Elena Niculina Dragoi

Date of approval in the department, 7 December 2023

Director of Department, Assoc. Prof. Dr. Eng. Andrei Stan

¹Bachelor / Master

²1-4 for Bachelor's, 1-2 for Master's

³1-8 for Bachelors, 1-3 for Masters

⁴*Exam, colloquium or VP A/R – from the curriculum*

⁵DF - fundamental subject, DID - subject in the field, DS - specialized subject or DC - complementary subject - from the education plan ⁶It is equal to 14 weeksx number of hours from point 3.1 (similar for 3.5, 3.6abc)

⁷*The lines below refer to the individual study; the total is completed at point 3.7.*

⁸Between 7 and 14 hours

⁹Between 2 and 6 hours

¹⁰The sum of the values on the previous lines, which refer to the individual study.

¹¹The sum of the number of hours of direct teaching activity (3.4) and the number of hours of individual study (3.7); must be equal to the

¹³Blackboard, video projector, flipchart, specific teaching materials, etc.

¹⁴Computing technique, software packages, experimental stands, etc.

¹⁵Competencies from the G1 and G1 bis Grids of the study program, adapted to the specifics of the subject, for which credits are allocated (www.rncis.ro or the faculty website) ¹⁶ From the education plan

¹⁷The credits allocated to the subject are distributed on professional and transversal competences according to the specifics of the subject

¹⁸Chapter and paragraph headings

¹⁹Exposition, lecture, blackboard presentation of the studied issue, use of video projector, discussions with students (for each chapter, if applicable) ²⁰Discussions, debates, presentation and/or analysis of papers, solving exercises and problems

²¹Practical demonstration, exercise, experiment

²²Case study, demonstration, exercise, error analysis, etc.

²³The connection with other subjects, the usefulness of the subject on the labor market

²⁴*The number of tests and the weeks in which they will be held will be specified.*

²⁵Scientific circles, professional competitions, etc.

²⁶The minimum performance standard from the competences grid of the study program is customized to the specifics of the subject, if applicable.

number of credits allocated to the subject (point 3.9)x 24 hours per credit.

¹²Mention the subjects that must be passed previously or equivalent