SYLLABUS Academic year 2024-2025

Dean, Prof. Dr. Eng. Vasile-Ion Manta

1. Program data

1.1 Higher education institution	"Gheorghe Asachi" Technical University of Iași
1.2 Faculty	Automatic Control and Computer Engineering
1.3 Department	Computers
1.4 Field of studies	Computers and Information Technology
1.5 The cycle of studies ¹	Master
1.6 Study program	Artificial Intelligence

2. Subject data

2.1 Name of the subject / Code	Data Analytics (Analiza datelor) / AI.112				
2.2 Course coordinator Assoc. Prof. Dr. Eng. Lavinia Ferariu					
2.3 Application instructor	Assoc. Prof. Dr. Eng. Lavinia Ferariu				
2.4 Year of study ² 1 2.5 Semester ³	1 2.6 Type of assessment ⁴ Colloquium 2.7 Type of subject ⁵ DS				

3. Estimated total time of daily activities (hours per semester)

3.1 Number of hours per week	Number of hours per week23.2 lectures13.3a sem.3.3b laboratory13.3c p		3.3c p	roject						
3.4 Total hours in curriculum ⁶	al hours in curriculum ⁶ 28 3.5 lectures 14 $3.6a$ sem. $3.6b$ laboratory 14 $3.6c$		3.6c p	roject						
Distribution of the time fund ⁷						No. ho	ours			
Study by textbook, course support, bibli	ograp	hy and notes							20	
Additional documentation in the library, on specialist electronic platforms and in the field							28			
Preparation of seminars/labs/projects, assignments, reports and portfolios						20				
Tutorial ⁸										
Examinations ⁹						4				
Other activities:										
3.7 Total hours of individual study ¹⁰ 72										
3.8 Total hours per semester ¹¹ 100										

3.9 Number of credits

4. Prerequisites (where applicable)

4.1 curriculum ¹²	
4.2 competences	

5. Conditions (where applicable)

5.1 conducting the lectures ¹³	Blackboard, video projector
5.2 conducting the seminar / laboratory / project ¹⁴	Laboratory room with computers and Internet accessPython (free license)

6. Specific competences accumulated¹⁵

¹Bachelor / Master

²1-4 for Bachelor's, 1-2 for Master's

³1-8 for Bachelors, 1-3 for Masters

⁴*Exam, colloquium or VP A/R – from the curriculum*

⁵*DF* - fundamental subject, *DID* - subject in the field, *DS* - specialized subject or *DC* - complementary subject - from the education plan

⁶It is equal to 14 weeksx number of hours from point 3.1 (similar for 3.5, 3.6abc)

4

⁷*The lines below refer to the individual study; the total is completed at point 3.7.*

⁸Between 7 and 14 hours

⁹Between 2 and 6 hours

¹⁰*The sum of the values on the previous lines, which refer to the individual study.*

¹⁴Computing technique, software packages, experimental stands, etc.

¹¹The sum of the number of hours of direct teaching activity (3.4) and the number of hours of individual study (3.7); must be equal to the number of credits allocated to the subject (point 3.9)x 24 hours per credit.

¹²Mention the subjects that must be passed previously or equivalent

¹³Blackboard, video projector, flipchart, specific teaching materials, etc.

		Number of credits assigned to the subject ¹⁶ :	4	Distribution of credits per					
				competences ¹⁷					
Pr	CP1	CD1 Knowledge of advanced concepts of computer science and information technology							
ofe		and the ability to work with these concepts.							
ssi	CP2	Scientific and practical research in the field of data analytics.		0.8					
on	CP3	Problem solving using methods and techniques specific to data analytics.		0.8					
al	CP4	Design and development of algorithms.		0.8					
co	CP5	Utilization of tools and technologies.		0.4					
m	CP6								
pe	CPS1								
te									
nc	CPS2								
Tr		Legislation compliant application of the intellectual property rights and of th	۵	0.1					
11 9n	CT1	principles norms and values of the professional ethics code within their own		0.1					
sv	CII	strategies for rigorous effective and responsible work	L						
ers		Application of communication techniques and effective group work: develor	ning	0.2					
al	CT2	empathic interpersonal communication skills and assuming leadership roles/	functions	0.2					
co		in a multi-specialized team.							
m	CTD	CT3 Creating opportunities for continuous training and the effective utilization of learning resources and techniques for personal development.		0.2					
ре	C13								
te									
nc	CTS								
es									

7. Objectives of the subject (resulting from the grid of specific competences accumulated)

7.1 General objective of the subject	Understand the concepts and techniques specific to data analytics.			
7.2 Specific objectives	• Understand the categories of problems approached by data analytics and the main steps to be taken in design.			
	Learning to develop data analytics applications in Python.			

8. Contents

8.1 Cou	rse ¹⁸	Teaching methods ¹⁹	Remarks
1.	Introduction to Data Analytics (2 h) Scope of data analytics. Data analytics vs. data analysis. Types of analytics: descriptive, predictive, prescriptive, diagnostic. Main steps of data analytics: data collection, data preprocessing and data warehouse design, data mining and validation. Examples of applications. Perspectives in data analytics.	The presentation of course-related materials using video-projected PowerPoint slides. Drawing connections	
2.	Data Exploration and Preprocessing (2 h) Types of data. Conversions. Exploratory data analysis. Data cleaning – errors, missing values, outliers. Data transformation and selection. Data warehouses – common architectures.	with concepts from adjacent disciplines from both undergraduate and graduate programs of study, and verifying how the novel elements	Annual revisions of course materials All materials are available on the
3.	<i>Statistical Tests (4 h)</i> Hypothesis testing. Parametric and non-parametric comparison tests. Correlation tests.	introduced are assimilated. Discussing the presented methods using	course website
4.	Data Mining - Association Rules (2 h) Quality metrics for association rules. Market basket problem. Frequent item set. Apriori algorithm.	numerous case studies and relevant examples.	

 ¹⁵Competencies from the G1 and G1bis Grids of the study program, adapted to the specifics of the subject, for which credits are allocated (www.rncis.ro or the faculty website)
 ¹⁶From the education plan

¹⁷The credits allocated to the subject are distributed on professional and transversal competences according to the specifics of the subject ¹⁸Chapter and paragraph headings

¹⁹Exposition, lecture, blackboard presentation of the studied issue, use of video projector, discussions with students (for each chapter, if applicable)

 5. Data Mining - Time Series (2 h) Stationary and nonstationary time series. Time series components. Preprocessing techniques. ARMA and ARIMA models. Motif discovery. 			
 6. Anomaly Detection (2 h) Statistical approaches. Distance-based approaches. Density-based approaches. Cluster-based approaches. Reconstruction-based approaches. 			
TOTAL: 14 hours			
 Course references: 1. P. Bruce, A. Bruce, P. Gedeck, Practical Statistics for Data Science, 2020, O'Reilly Media, USA. 2. J. Han, M. Kamber, J. Pei, Data Mining Concepts and Techniques, 2012, Morgan Kaufmann, USA. 3. L. Igual, S. Segui, Introduction to Data Science, 2015, Springer, UK. 4. K. Jamsa, Introduction to Data Mining and Analytics, 2021, Jones & Barlett Learning, USA. 5. H. Jones, Data Analytics: The Ultimate Guide to Big Data Analytics for Business, Data Mining Techniques, Data Collection, and Business Intelligence Concepts, 2020, Bravex Publications, USA. 6. D.T. Larose, C.D. Larose, Data Mining and Predictive Analytics, 2015, John Wiley & Sons, Canada. 7. A. Maheshwari, Dana Analytics Made Accessible, 2023, Mc Graw Hill/Kindle. 8. G. Mount, Advancing into Analytics, 2021, O'Reilly Media, USA. 			
8.2a Seminar	Teaching methods ²⁰	Remarks	
8.2b Laboratory	Teaching methods ²¹	Remarks	
 The main in developing data analytics applications. (2h) Data preprocessing. (2h) Statistic tests. (4h) Discovering association rules from data. (2h) 	General and individual	Annual revisions	

- 4. Discovering association rules from data. (2h)
- Discovering patterns in time series. (2h) 5.
- 6. Anomaly detection. (2h) **TOTAL: 14 hours**

8.2c Project

Applications references:

1. P. Bruce, A. Bruce, P. Gedeck, Practical Statistics for Data Science, 2020, O'Reilly Media, USA.

- 2. J. Han, M. Kamber, J. Pei, Data Mining Concepts and Techniques, 2012, Morgan Kaufmann, USA.
- 3. L. Igual, S. Segui, Introduction to Data Science, 2015, Springer, UK.
- 4. K. Jamsa, Introduction to Data Mining and Analytics, 2021, Jones & Barlett Learning, USA.
- 5. H. Jones, Data Analytics: The Ultimate Guide to Big Data Analytics for Business, Data Mining Techniques, Data Collection, and Business Intelligence Concepts, 2020, Bravex Publications, USA.
- 6. D.T. Larose, C.D. Larose, Data Mining and Predictive Analytics, 2015, John Wiley & Sons, Canada.
- 7. A. Maheshwari, Dana Analytics Made Accessible, 2023, McGraw Hill/Kindle.
- 8. G. Mount, Advancing into Analytics, 2021, O'Reilly Media, USA.

9. Corroboration of the contents of the subject with the expectations of representatives of the epistemic community, professional associations and representative employers in the field related to the program²³

- The course content was created in accordance with the syllabuses of related courses from prestigious international universities.
- The course content aims to prepare the students for research-advanced design projects and was drafted to be up to

explanations, individual

Teaching methods²²

computer work

of materials

Remarks

²⁰Discussions, debates, presentation and/or analysis of papers, solving exercises and problems

²¹*Practical demonstration, exercise, experiment*

²²Case study, demonstration, exercise, error analysis, etc.

²³The connection with other subjects, the usefulness of the subject on the labor market

- date with the relevant open problems in recent research.
- The course content illustrates the utility of data analytics in several complex applications. •

10. Evaluation					
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in the final grade		
10.4a Colloquium	Acquired theoretical and practical knowledge (quantity, correctness, accuracy)	Periodic tests ²⁴ : Homework: Other activities ²⁵ : Final evaluation: 100% Written test, with problems and questions related to some study cases	70% (minimum 5)		
10.4b Seminar					
10.4c Laboratory	Knowledge of equipment, how to use specific tools; evaluation of tools or achievements, processing and interpretation of results	 Written questionnaire Oral presentation Laboratory reports Practical demonstration 	30% (minimum 5)		
10.4d Project					
10.5 Minimum performance standard ²⁶ : grade 5 in the colloquium and applications.					

Date of completion, 10 January 2024

Signature of course coordinator, Assoc. Prof. Dr. Eng. Lavinia Ferariu

Signature of application instructor, Assoc. Prof. Dr. Eng. Lavinia Ferariu

Date of approval in the department,

Director of Department, Assoc. Prof. Dr. Eng. Andrei Stan

 ²⁴The number of tests and the weeks in which they will be held will be specified.
 ²⁵Scientific circles, professional competitions, etc.

²⁶The minimum performance standard from the competences grid of the study program is customized to the specifics of the subject, if applicable.