SYLLABUS Academic year 2025-2026

Dean, Prof. dr. eng. Vasile-Ion Manta

1. Program data

1.1 Higher education institution	"Gheorghe Asachi" Technical University of Iași
1.2 Faculty	Automatic Control and Computer Engineering
1.3 Department	Computers
1.4 Field of studies	Computers and Information Technology
1.5 The cycle of studies ¹	Master
1.6 Study program	Artificial Intelligence

2. Subject data

2.1 Name of the subject	ct / Co	de	Multiagent Systems (Sisteme multi-agent) / AI.201				
2.2 Course coordinator			Prof. dr.	eng. Florin Leon			
2.3 Application instructor			Lect. dr.	eng. Marius Gavrilescu			
2.4 Year of study ²	2	2.5 Semester ³	3	2.6 Type of assessment ⁴	exam	2.7 Type of subject ⁵	DS

3. Estimated total time of daily activities (hours per semester)

6

3.1 Number of hours per week		3.2 lectures	2	3.3a sem.		3.3b laboratory	1	3.3c p	roject	1
3.4 Total hours in curriculum ⁶	56	3.5 lectures	28	3.6a sem.		3.6b laboratory	14	3.6c p	roject	14
Distribution of the time fund ⁷									No. ho	ours
Study by textbook, course support, bibli	ograp	by and notes							40	
Additional documentation in the library, on specialist electronic platforms and in the field							30			
Preparation of seminars/labs/projects, assignments, reports and portfolios							20			
Tutorial ⁸										
Examinations ⁹								4		
Other activities:										
3.7 Total hours of individual study ¹⁰ 94										
3.8 Total hours per semester ¹¹ 150										

4. Prerequisites (where applicable)

3.9 Number of credits

In I for equipites () In	ere appreade()
4.1 curriculum ¹²	
4.2 competences	

5. Conditions (where applicable)

5.1 conducting the lectures ¹³	Blackboard, video projector
5.2 conducting the seminar / laboratory / project ¹⁴	 Laboratory room with computers and Internet access The Visual Studio programming environment (academic license)

6. Specific competences accumulated¹⁵

		Number of an dite assigned to the subject ¹⁶ .	Distribution of					
		Number of credits assigned to the subject : 6	creatis per competences ¹⁷					
	CP1	Knowledge of advanced concepts of computer science and information technology and	1					
	-	the ability to work with these concepts.						
al	CP2	CP2 Scientific and practical research in the field of artificial intelligence.						
on:	CP3	Problem solving using artificial intelligence methods and techniques.	1.1					
ssi ete	CP4	Design and development of artificial intelligence systems.	1.1					
rofe	CP5	Utilization of artificial intelligence tools and technologies.	1					
T 3	CP6							
	CPS1							
	CPS2							
70		Legislation compliant application of the intellectual property rights and of the	0.1					
sal	CT1	principles, norms and values of the professional ethics code within their own strategies						
'er: ten		for rigorous, effective and responsible work.						
nsv		Application of communication techniques and effective group work; developing	0.3					
ra	CT2	empathic interpersonal communication skills and assuming leadership roles/functions						
T C		in a multi-specialized team.						

CT3	Creating opportunities for continuous training and the effective utilization of learning resources and techniques for personal development.	0.3
CTS		

7. Objectives of the subject (resulting from the grid of specific competences accumulated)

7.1 General objective of the subject	Understanding and possibility of practical application of knowledge specific to multiagent systems
7.2 Specific objectives	The goal of this course is to introduce the general concepts of multiagent systems, the ways in which agents can interact, cooperate and be coordinated to solve problems by searching for solutions in a distributed manner

8. Contents

8.1 Course ¹⁸	Teaching methods ¹⁹	Remarks
<i>1. Introduction to the field of agents (2h)</i> Agents; Intelligent agents; Mobile agents; Agent applications		
2. Agent architectures (I) (2h) Abstract Architectures; Logic-Based Architectures; Metatem; Reactive Architectures; Subsumption Architectures		
<i>3. Agent architectures (II) (2h)</i> BDI architecture; Applications of PRS; Layered architectures		
<i>4. Game theory (I) (2h)</i> Zero-sum games with two agents: Dominance; Pure and mixed minimax equilibrium; Matrix games		
5. <i>Game theory (II) (3h)</i> General sum games with two agents; Pure and mixed Nash equilibrium; Cooperative games; Game representation in characteristic form; The core; Shapley value; Nucleolus		
6. Game theory (III) (1h) Sequential games: Game representation in extended form, Transformation into normal form, Zermelo's Algorithm (minimax); Informational sets; Partial information games		
7. Inter-agent communication (2h)Types of communication in multiagent systems; Speech acts theory;Communication languages for agents; Ontologies	Lectures with	
8. Search algorithms for multiagent systems (2h) Search in non-deterministic environments; Search in partially observable environments; Online search in unknown environments: LRTA* and RTA* algorithms; Search in dynamic environments	Powerpoint presentations, explanations and answers to questions	
9. Auction and voting protocols (2h) Types of auctions; Auction strategies; Voting protocols; Paradoxes; Arrow's impossibility theorem; Strategic manipulation of votes; Gibbard-Satterthwaite theorem		
10. Negotiation protocols (2h) The negotiation problem; Game-theoretic approaches; Heuristic-based approaches; Argumentation-based approaches		
11. Mechanism design. Contract net protocol (2h) Mechanism design; Revelation principle of; Groves-Clarke and Vickrey-Clarke-Groves mechanisms; Contract net protocol; Task allocation; Concurrent contract nets		
12. Coordination methods. Agent Organizations (2h) Coordination through partial global planning (the TAEMS/GPGP model); Coordination through common intentions (the CDPS model); Coordination games; Agent organizations		
 13. Learning in multiagent systems. Other multiagent system development frameworks (2h) Learning in multiagent systems: Repeated games (Fictitious play, Replicator dynamics, Evolutionarily stable systems); General theories for learning in multiagent systems; Other multiagent system development frameworks: Jade, 		
NetLogo, Soar, Mason, Jason		

14. Agent-based modelling and simulation (2h) Complex systems and emergent behaviour; Description and formulation of agent-based modelling: the ODD protocol; Applications of agent-based modelling; NetLogo simulations						
 Course references: 1. Weiss, G., ed. (2016). Multiagent Systems, The MIT Press, Cambridge, Massachusetts. 2. Wooldridge, M. (2002). An Introduction to MultiAgent Systems, John Wiley & Sons. 3. Vidal, J.M. (2010). Fundamentals of Multiagent Systems. https://jmvidal.cse.sc.edu/papers/mas.pdf 4. Russell, S.J., Norvig, P. (2022). Artificial Intelligence: A Modern Approach, Prentice Hall, 4th edition. 5. Shoham, Y., Leyton-Brown, K. (2008). Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations, Cambridge University Press. 6. Ferber, J. (1999). Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, Addison-Wesley Professional. 7. Leon, F. (2006). Intelligent Agents with Cognitive Capabilities, Ed. Tehnopress, Iaşi. 8. Lin, F.O., ed. (2005). Designing Distributed Learning Environments with Intelligent Software Agents, Information Science Publishing. 9. Padgham, L., Winikoff, M. (2004). Developing Intelligent Agent Systems: A Practical Guide, Wiley Series in Agent Technology, Wiley. 10. Sugumaran, V., ed. (2007). Application of Agents and Intelligent Information Technologies, Advances in Intelligent 						
8.2a Seminar	Teaching methods ²⁰	Remarks				
8.2b Laboratory	Teaching methods ²¹	Remarks				
 I. Multiagent systems. The ActressMas library (2h) Definitions and general concepts; Presentation of the ActressMas library (Structure of classes, Agent class, Environment class, Execution flow of agents); Examples (Example 1: Counting agent, Example 2: Monitor agent with multiple worker agents); Applications 2. Reactive agents (2h) Reactive agent architectures; The formal reactive model; Example: Exploratory agents (Non-collaborative agents, Optimization through collaboration between agents); Applications 3. Auctions (2h) General presentation; Auction protocols (English, Blind, Dutch, Vickrey); Applications 4. Negotiation protocols (2h) General aspects; Negotiation using game theory; Negotiation protocols (Monotonic concessions; Zeuthen strategy); Applications 5. Contract Net Protocol (2h) General aspects; The Contract Net Protocol according to FIPA standards (Description, Exceptions to the standard protocol); Applications 6. The prisoner's dilemma (2h) Fundamentals; The generalized version; The iterative version; Winning strategies; Applications 7. The predator-prey model (2h) General description (The interaction between two populations, Exceptional situations); The Lotka-Volterra equations; Applications 	General and individual explanations, individual computer work					
8.2c Project	Teaching methods ²²	Remarks				
 Individual project to design and implement a multiagent system. Stages: 1. Clarification of the project topic. Establishing agent types and messages in the agent system (2h) 						
2. Application design: Schematic representation of states and actions within the system with agents; establishing details related to user interaction $(2h)$						
3. Creating the hierarchy of classes related to the multiagent system. Establishing and implementing agent behaviours based on messages exchanged in the system. (2h)						
4. Implementation of the application based on the design made in the previous stages (4h)						
5. Elaboration of the documentation, verification of its correctness (4h)						

Applications (laboratory / project) references:

1. Leon, F. (2023). *Multiagent Systems*. Lecture notes, http://florinleon.byethost24.com/curs_sma.html (or Moodle) 2. Leon, F. (2018). *ActressMas, A .NET Multiagent Framework*, http://florinleon.byethost24.com/actressmas , https://github.com/florinleon/ActressMas

3. Bigus, J.P., Bigus, J., (2001). Constructing Intelligent Agents Using Java: Professional Developer's Guide, 2nd edition, Wiley.

4. Knapik, M., Johnson, J. (1997). Developing Intelligent Agents for Distributed Systems: Exploring Architectures, Techniques, and Applications, Osborne McGraw-Hill.

9. Corroboration of the contents of the subject with the expectations of representatives of the epistemic community, professional associations and representative employers in the field related to the program²³

The Multiagent Systems (MAS) course offers an essential understanding of collaborative artificial intelligence (AI) systems. By exploring how multiple AI entities interact, it cultivates expertise in designing intelligent systems that communicate, negotiate, and solve complex problems collectively. This course can enrich future professionals with the skills important for developing autonomous vehicles, smart infrastructure, and collaborative robotics. For the IT industry, MAS skills can help the creation of advanced, interconnected AI frameworks, driving advancements in areas like cybersecurity, network optimization, and efficient resource allocation.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods		10.3 Weight in
		24	24	
	Acquired theoretical and	Periodic tests ²⁴ :		
10 /a Evam	practical knowledge (quantity	Homework:		50%
10.4a Exam	practical knowledge (qualitity,	Other activities ²⁵ :		(minimum 5)
	correctness, accuracy)	Final evaluation:	100%	
10 4h Cominon	Frequency/relevance of	Record of interventions, p	ortfolio of works (references,	
10.40 Seminar	interventions or responses	scientific summaries)		
	Knowledge of equipment, how			
	to use specific tools; evaluation	 Practical demonstration 		
10.4c Laboratory	of tools or achievements,	Oral answers		
-	processing and interpretation of	• Written questionnaires		
	results	1		50%
	The quality of the completed			(minimum 5)
	project, the correctness of the	• Self-assessment, presentation and/or defence of the		
10.4d Project	project documentation, the	project		
	justification of the chosen	• Critical evaluation of a project		
	solutions		E J J	
10.5 Minimum performance standard ²⁶ , grade 5 in the exam and applications (the average between laboratory and project)				

Date of completion, 4 December 2023 Signature of course coordinator, Prof. dr. eng. Florin Leon Signature of application instructor, Lect. dr. eng. Marius Gavrilescu

Date of approval in the department, 7 December 2023 Director of department, Assoc. prof. dr. eng. Andrei Stan

¹Bachelor / Master

²1-4 for Bachelor's, 1-2 for Master's

³1-8 for Bachelors, 1-3 for Masters

⁴Exam, colloquium or VPA/R – from the curriculum

⁵DF - fundamental subject, DID - subject in the field, DS - specialized subject or DC - complementary subject - from the education plan

⁶It is equal to 14 weeksx number of hours from point 3.1 (similar for 3.5, 3.6abc)

⁷The lines below refer to the individual study; the total is completed at point 3.7.

⁸Between 7 and 14 hours

⁹Between 2 and 6 hours

¹⁰The sum of the values on the previous lines, which refer to the individual study.

¹¹The sum of the number of hours of direct teaching activity (3.4) and the number of hours of individual study (3.7); must be equal to the number of credits allocated to the subject (point 3.9)x 25 hours per credit.

¹²Mention the subjects that must be passed previously or equivalent

¹³Blackboard, video projector, flipchart, specific teaching materials, etc.

¹⁴Computing technique, software packages, experimental stands, etc.

¹⁶ From the education plan

¹⁷The credits allocated to the subject are distributed on professional and transversal competences according to the specifics of the subject ¹⁸Chapter and paragraph headings

¹⁹Exposition, lecture, blackboard presentation of the studied issue, use of video projector, discussions with students (for each chapter, if applicable) ²⁰Discussions, debates, presentation and/or analysis of papers, solving exercises and problems

- ²¹Practical demonstration, exercise, experiment ²²Case study, demonstration, exercise, error analysis, etc.
- 23 The connection with other subjects, the usefulness of the subject on the labor market
- ²⁴*The number of tests and the weeks in which they will be held will be specified.*
- ²⁵Scientific circles, professional competitions, etc.

²⁶The minimum performance standard from the competences grid of the study program is customized to the specifics of the subject, if applicable.

¹⁵Competencies from the G1 and G1bis Grids of the study program, adapted to the specifics of the subject, for which credits are allocated (www.rncis.ro or the faculty website)