SYLLABUS Academic year 2025-2026

Dean, Prof. dr. eng. Vasile-Ion Manta

1. Program data

1.1 Higher education institution	"Gheorghe Asachi" Technical University of Iași
1.2 Faculty	Automatic Control and Computer Engineering
1.3 Department	Computers
1.4 Field of studies	Computers and Information Technology
1.5 The cycle of studies ¹	Master
1.6 Study program	Artificial Intelligence

2. Subject data

2.1 Name of the subject / Code Reinforcement Learning (Învățare cu întărire) / AI.202					
2.2 Course coordinator	r		Prof. dr. eng. Florin Leon		
2.3 Application instructor			Lect. dr.	r. eng. Otilia Zvorișteanu	
2.4 Year of study ²	2	2.5 Semester ³	3	2.6 Type of assessment ⁴ exam 2.7 Type of subject ⁵ D	S

3. Estimated total time of daily activities (hours per semester)

5

3.1 Number of hours per week	4	3.2 lectures	2	3.3a sem.		3.3b laboratory	1	3.3c p	roject	1
3.4 Total hours in curriculum ⁶	56	3.5 lectures	28	3.6a sem.		3.6b laboratory	14	3.6c p	roject	14
Distribution of the time fund ⁷							No. ho	ours		
Study by textbook, course support, bibli	ograp	by and notes							30	•
Additional documentation in the library, on specialist electronic platforms and in the field						20	•			
Preparation of seminars/labs/projects, assignments, reports and portfolios						15				
Tutorial ⁸										
Examinations ⁹							4			
Other activities:										
3.7 Total hours of individual study ¹⁰ 69										
3.8 Total hours per semester ¹¹ 125										

3.9 Number of credits

4. Prerequisites (where applicable)

4.1 curriculum ¹²	
4.2 competences	

5. Conditions (where applicable)

5.1 conducting the lectures ¹³	Blackboard, video projector
5.2 conducting the seminar / laboratory / project ¹⁴	 Laboratory room with computers and Internet access The Visual Studio (academic license) and PyCharm programming environments

6. Specific competences accumulated¹⁵

			Distribution of
		Number of credits assigned to the subject ¹⁶ : 5	credits per
			competences ¹⁷
	CD1	Knowledge of advanced concepts of computer science and information technology and	0.9
	CFI	the ability to work with these concepts.	
le s	CP2	Scientific and practical research in the field of artificial intelligence.	0.9
ona	CP3	Problem solving using artificial intelligence methods and techniques.	0.9
ssi ete	CP4	Design and development of artificial intelligence systems.	0.9
rofe	CP5	Utilization of artificial intelligence tools and technologies.	0.9
4 S	CP6		
	CPS1		
	CPS2		
		Legislation compliant application of the intellectual property rights and of the	0.1
sal	CT1	principles, norms and values of the professional ethics code within their own strategies	
'er: ten		for rigorous, effective and responsible work.	
nsv		Application of communication techniques and effective group work; developing	0.2
ra	CT2	empathic interpersonal communication skills and assuming leadership roles/functions	
5 L		in a multi-specialized team.	

CT3	Creating opportunities for continuous training and the effective utilization of learning resources and techniques for personal development.	0.2
CTS		

7.1 General objective of the subject	Understanding and possibility of practical application of knowledge specific to reinforcement learning
7.2 Specific objectives	The goal of this course is to introduce the general concepts of reinforcement learning, such as Markov decision processes, Q-learning, and policy gradients in order to optimize decision-making in dynamic environments while designing and implementing intelligent systems.

7. Objectives of the subject (resulting from the grid of specific competences accumulated)

8. Contents

8.1 Course ¹⁸	Teaching methods ¹⁹	Remarks
1. Introduction to the field of reinforcement learning (2h)		
2. Markov Decision Processes (2h)		
3. Temporal-Difference Learning (2h)		
4. N-step Bootstrapping Algorithms (2h)		
5. Planning and Learning with Tabular Methods (2h)		
6. On-policy Prediction with Approximation (2h)	Lectures with	
7. Off-policy Methods with Approximation (2h)	Powerpoint	
8. Eligibility Traces (2h)	presentations, explanations and	
9. Policy Gradient Methods (2h)	answers to questions	
10. Model-Based Reinforcement Learning (2h)		
11. Multi-Agent Reinforcement Learning (2h)		
12. Hierarchical Reinforcement Learning (2h)		
13. Meta-Learning (2h)		
14. Applications and Case Studies (2h)		

Course references:

1. Sutton, R. S., Barto, A. G. (2018). Reinforcement Learning, second edition: An Introduction, Bradford Books; 2nd edition

2. Russell, S.J., Norvig, P. (2022). Artificial Intelligence: A Modern Approach, Prentice Hall, 4th edition.

3. Szepesvari, C. (2010). Algorithms for Reinforcement Learning, Springer

4. Morales, M. (2020). Grokking Deep Reinforcement Learning, Manning

5. Lapan, M. (2018). Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more, Packt Publishing

8.2a Seminar	Teaching methods ²⁰	Remarks
	21	
8.2b Laboratory	Teaching methods ²¹	Remarks
1. Solving Markov Decision Processes (2h)		
2. Using Tabular Reinforcement Learning Methods (2h)		
3. Application of Q-Learning Algorithm (2h)	General and individual	
4. Application of SARSA Algorithm (2h)	explanations, individual	
5. Approximating Policies with Neural Networks (2h)	computer work	
6. Application of REINFORCE Algorithm (2h)		
7. Using Actor-Critic Methods (2h)		
8.2c Project	Teaching methods ²²	Remarks
Individual project to design and implement a multiagent system. Stages:		
1. Clarification of the project topic (2h)		
2. Application design: Schematic representation of states and actions within		

Form PO.DID.04-F3, edition 2 revision 1

the reinforcement learning system (2h)	
3. Creating the hierarchy of classes related to the reinforcement learning system (2h)	
4. Implementation of the application based on the design made in the previous stages $(4h)$	
5. Elaboration of the documentation, verification of its correctness (4h)	

Applications (laboratory / project) references:

 Lapan, M. (2018). Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more, Packt Publishing
 Beysolow, T. (2019). Applied Reinforcement Learning with Python: With OpenAI Gym, Tensorflow, and Keras, Apress
 Sanghi, N. (2021). Deep Reinforcement Learning with Python: With PyTorch, TensorFlow and OpenAI Gym, Apress

9. Corroboration of the contents of the subject with the expectations of representatives of the epistemic community, professional associations and representative employers in the field related to the program²³

The Reinforcement Learning course aligns with the growing demands of the IT industry by equipping individuals with the expertise to navigate complex decision-making in dynamic environments. As the industry increasingly relies on intelligent systems and adaptive algorithms, this course helps professionals capable of designing, implementing, and optimizing such solutions. Proficiency in Markov Decision Processes, Q-learning, and policy gradients directly addresses the industry need for efficient resource allocation, autonomous decision-making, and adaptable frameworks, ensuring that graduates can tackle the evolving AI-driven technologies.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation m	10.3 Weight in the final grade	
10.4a Exam	Acquired theoretical and practical knowledge (quantity, correctness, accuracy)	Periodic tests ²⁴ : Homework: Other activities ²⁵ : Final evaluation:	100%	50% (minimum 5)
10.4b Seminar	Frequency/relevance of interventions or responses	Record of interventions, portfolio o scientific summaries)		
10.4c Laboratory	Knowledge of equipment, how to use specific tools; evaluation of tools or achievements, processing and interpretation of results	ow tion • Practical demonstrations • Oral answers • Written questionnaires		50%
10.4d Project	The quality of the completed project, the correctness of the project documentation, the justification of the chosen solutions	 Self-assessment, presentation and project Critical evaluation of a project 	(minimum 5)	

10.5 Minimum performance standard²⁶: grade 5 in the exam and applications (the average between laboratory and project)

Date of completion, 4 December 2023 Signature of course coordinator, Prof. dr. eng. Florin Leon Signature of application instructor, Lect. dr. eng. Otilia Zvorișteanu

Date of approval in the department, 7 December 2023 Director of department, Assoc. prof. dr. eng. Andrei Stan

- ²1-4 for Bachelor's, 1-2 for Master's
- ³1-8 for Bachelors, 1-3 for Masters
- ⁴Exam, colloquium or VP A/R from the curriculum

- ⁷*The lines below refer to the individual study; the total is completed at point 3.7.*
- ⁸Between 7 and 14 hours

Form PO.DID.04-F3, edition 2 revision 1

¹Bachelor / Master

⁵DF - fundamental subject, DID - subject in the field, DS - specialized subject or DC - complementary subject - from the education plan ⁶It is equal to 14 weeksx number of hours from point 3.1 (similar for 3.5, 3.6abc)

¹³Blackboard, video projector, flipchart, specific teaching materials, etc.

¹⁵Competencies from the G1 and G1bis Grids of the study program, adapted to the specifics of the subject, for which credits are allocated (www.rncis.ro or the faculty website) ¹⁶ From the education plan

¹⁷The credits allocated to the subject are distributed on professional and transversal competences according to the specifics of the subject ¹⁸Chapter and paragraph headings

¹⁹Exposition, lecture, blackboard presentation of the studied issue, use of video projector, discussions with students (for each chapter, if applicable)

Discussions, debates, presentation and/or analysis of papers, solving exercises and problems

²¹Practical demonstration, exercise, experiment

²²Case study, demonstration, exercise, error analysis, etc.

²³The connection with other subjects, the usefulness of the subject on the labor market

²⁴The number of tests and the weeks in which they will be held will be specified.

²⁵Scientific circles, professional competitions, etc.

²⁶The minimum performance standard from the competences grid of the study program is customized to the specifics of the subject, if applicable.

⁹Between 2 and 6 hours

¹⁰The sum of the values on the previous lines, which refer to the individual study.

¹¹The sum of the number of hours of direct teaching activity (3.4) and the number of hours of individual study (3.7); must be equal to the number of credits allocated to the subject (point 3.9)x 25 hours per credit.

¹²Mention the subjects that must be passed previously or equivalent

¹⁴Computing technique, software packages, experimental stands, etc.