SYLLABUS Academic year 2025-2026

Dean, Prof. dr. eng. Vasile-Ion Manta

1. Program data

1. I Togram uata	
1.1 Higher education institution	"Gheorghe Asachi" Technical University of Iași
1.2 Faculty	Automatic Control and Computer Engineering
1.3 Department	Computers
1.4 Field of studies	Computers and Information Technology
1.5 The cycle of studies ¹	Master
1.6 Study program	Artificial Intelligence

2. Subject data

2.1 Name of the subject / Code			Explainable and Neuro-Symbolic Learning Methods (Metode de învățare				
			explicabile și neuro-simbolice) / AI.203				
2.2 Course coordinator			Prof. dr. eng. Florin Leon				
2.3 Application instructor			Lect. dr	. eng. Otilia Zvorișteanu			
2.4 Year of study ² 2 2.5 Semester ³			3	2.6 Type of assessment ⁴ exam 2.7 Type of subject ⁵	DS		

3. Estimated total time of daily activities (hours per semester)

3.1 Number of hours per week		3.2 lectures	1	3.3a sem.		3.3b laboratory	1	3.3c p	roject	
$3.4 \text{ Total hours in curriculum}^6$ 28 3.5 lectures 14 $3.6a \text{ sem.}$				3.6b laboratory	14	3.6c p	roject			
Distribution of the time fund ⁷								No. ho	ours	
Study by textbook, course support, bibli	ograp	bhy and notes							33	
Additional documentation in the library, on specialist electronic platforms and in the field							20			
Preparation of seminars/labs/projects, assignments, reports and portfolios							15			
Tutorial ⁸										
Examinations ⁹							4			
Other activities:										
3.7 Total hours of individual study ¹⁰ 72										

3.8 Total hours per semester ¹¹	100
3.9 Number of credits	

4. Prerequisites (where applicable)

4.1 curriculum ¹²	
4.2 competences	

5. Conditions (where applicable)

et conditions (where uppliedole)				
5.1 conducting the lectures ¹³	Blackboard, video projector			
5.2 conducting the seminar / laboratory / project ¹⁴	 Laboratory room with computers and Internet access The Visual Studio (academic license) and PyCharm programming environments 			

6. Specific competences accumulated¹⁵

		Number of credits assigned to the subject ^{16} : 4	Distribution of credits per
	-		competences ¹⁷
	CP1	Knowledge of advanced concepts of computer science and information technology and	0.8
	CFI	the ability to work with these concepts.	
al es	CP2	Scientific and practical research in the field of artificial intelligence.	0.7
on:	CP3	Problem solving using artificial intelligence methods and techniques.	0.8
ssi ete	CP4	Design and development of artificial intelligence systems.	0.7
Professional competences	CP5	Utilization of artificial intelligence tools and technologies.	0.7
P ₁	CP6		
	CPS1		
	CPS2		
. э		Legislation compliant application of the intellectual property rights and of the	0.1
ten	CT1	principles, norms and values of the professional ethics code within their own strategies	
pet		for rigorous, effective and responsible work.	
al competenc	CT2	Application of communication techniques and effective group work; developing	0.1
al co	012	empathic interpersonal communication skills and assuming leadership roles/functions	

	in a multi-specialized team.	
CT3	Creating opportunities for continuous training and the effective utilization of learning resources and techniques for personal development.	0.1
CTS		

7. Objectives of the subject (resulting from the grid of specific competences accumulated)

7.1 General objective of the subject	Understanding and possibility of practical application of knowledge specific to explainable and neuro-symbolic learning methods
7.2 Specific objectives	The goal of this course is to present the fusion of symbolic and subsymbolic artificial intelligence methods together with interpretable models that bridge the gap between neural networks and human-understandable reasoning.

8.1 Course¹⁸ Teaching methods¹⁹ Remarks 1. Overview of Explainable Artificial Intelligence (types of XAI: model-based, input-based, output-based; techniques for generating explanations: saliency maps, rule extraction, model visualization) (2h) 2. Model-agnostic algorithms I (LIME and SHAP algorithms; application for classification and regression models) (2h) 3. Model-agnostic algorithms II (ELI5 library; layer-wise relevance Lectures with propagation LRP; application for multi-class classification, sentiment analysis Powerpoint and time-series) (2h) presentations, explanations and 4. Example-based explanations (counterfactual explanations; adversarial answers to questions examples; prototypes and criticisms) (2h) 5. Hybrid neuro-symbolic systems (types of NS combinations; examples of algorithms) (2h) 6. Cognitive architectures I (ACT-R, SOAR) (2h) 7. Cognitive architectures II (SPA) (2h)

Course references:

8. Contents

1. Molnar, C. (2022). *Interpretable Machine Learning: A Guide For Making Black Box Models Explainable*, online: https://christophm.github.io/interpretable-ml-book/

2. Mishra P. (2023). Explainable AI Recipes: Implement Solutions to Model Explainability and Interpretability with Python, Apress

3. Rothman, D. (2020). Hands-On Explainable AI (XAI) with Python: Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps, Packt Publishing

4. Dingli, A., Farrugia, D. (2023). Neuro-Symbolic AI: Design transparent and trustworthy systems that understand the world as you do, Packt Publishing

5. O'Reilly, R.C.; Munakata, Y. (2000). Understanding the Mind by Simulating the Brain. MIT Press

6. Sun, R. (ed.) (2023). *The Cambridge Handbook of Computational Cognitive Sciences*. Cambridge University Press, second edition

8.2a Seminar	Teaching methods ²⁰	Remarks
8.2b Laboratory	Teaching methods ²¹	Remarks
 LIME algorithm (2h) SHAP algorithm (2h) Layer-wise relevance propagation (LRP) (2h) Using the ELI5 library (2h) Working with the Neural Engineering Framework (NEF) (6h) 	General and individual explanations, individual computer work	
8.2c Project	Teaching methods ²²	Remarks

Applications (laboratory) references:

1. Molnar, C. (2022). *Interpretable Machine Learning: A Guide For Making Black Box Models Explainable*, online: https://christophm.github.io/interpretable-ml-book/ Mishra P. (2023). Explainable AI Recipes: Implement Solutions to Model Explainability and Interpretability with Python, Apress
 O'Reilly, R.C.; Munakata, Y. (2000). *Understanding the Mind by Simulating the Brain*. MIT Press

9. Corroboration of the contents of the subject with the expectations of representatives of the epistemic community,

professional associations and representative employers in the field related to the program²³ An "Explainable and Neuro-Symbolic Learning Methods" course directly addresses the IT industry's demand for transparent AI systems, as the industry seeks interpretable AI solutions due to ethical, regulatory, and practical concerns. By combining subsymbolic principles with symbolic AL this course propagas professionals to develop models that not only perform

subsymbolic principles with symbolic AI, this course prepares professionals to develop models that not only perform effectively but also provide comprehensible explanations for their decisions.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods		10.3 Weight in the final grade
10.4a Exam	Acquired theoretical and practical knowledge (quantity, correctness, accuracy)	Periodic tests ²⁴ : Homework: Other activities ²⁵ : Final evaluation:	100%	50% (minimum 5)
10.4b Seminar	Frequency/relevance of interventions or responses	Record of interventions, p scientific summaries)	ortfolio of works (references,	
10.4c Laboratory	Knowledge of equipment, how to use specific tools; evaluation of tools or achievements, processing and interpretation of results	 Practical demonstrations Oral answers Written questionnaires 	S	50% (minimum 5)
10.4d Project	The quality of the completed project, the correctness of the project documentation, the justification of the chosen solutions			
10.5 Minimum per	formance standard ²⁶ : grade 5 in th	ne exam and laboratory wor	rk	4

Date of completion, 4 December 2023 Signature of course coordinator, Prof. dr. eng. Florin Leon Signature of application instructor, Lect. dr. eng. Otilia Zvorișteanu

Date of approval in the department, 7 December 2023 Director of department, Assoc. prof. dr. eng. Andrei Stan

¹Bachelor / Master

- ${}^{5}DF$ fundamental subject, DID subject in the field, DS specialized subject or DC complementary subject from the education plan ${}^{6}It$ is equal to 14 weeksx number of hours from point 3.1 (similar for 3.5, 3.6abc)
- ⁷The lines below refer to the individual study; the total is completed at point 3.7.

²1-4 for Bachelor's, 1-2 for Master's

³1-8 for Bachelors, 1-3 for Masters

⁴Exam, colloquium or VP A/R - from the curriculum

⁸Between 7 and 14 hours

⁹Between 2 and 6 hours

¹⁰The sum of the values on the previous lines, which refer to the individual study.

¹¹The sum of the number of hours of direct teaching activity (3.4) and the number of hours of individual study (3.7); must be equal to the number of credits allocated to the subject (point 3.9)x 25 hours per credit.

¹²Mention the subjects that must be passed previously or equivalent

¹³Blackboard, video projector, flipchart, specific teaching materials, etc.

¹⁴Computing technique, software packages, experimental stands, etc.

¹⁵Competencies from the G1 and G1bis Grids of the study program, adapted to the specifics of the subject, for which credits are allocated (www.rncis.ro or the faculty website)

¹⁶ From the education plan

¹⁷The credits allocated to the subject are distributed on professional and transversal competences according to the specifics of the subject ¹⁸Chapter and paragraph headings

¹⁹Exposition, lecture, blackboard presentation of the studied issue, use of video projector, discussions with students (for each chapter, if applicable)

 ²⁰Discussions, debates, presentation and/or analysis of papers, solving exercises and problems
 ²¹Practical demonstration, exercise, experiment
 ²²Case study, demonstration, exercise, error analysis, etc.
 ²³The connection with other subjects, the usefulness of the subject on the labor market
 ²⁴The number of tests and the weeks in which they will be held will be specified.
 ²⁵Scientific circles, professional competitions, etc.
 ²⁶The minimum performance standard from the competences grid of the study program is customized to the specifics of the subject, if applicable applicable.