SYLLABUS Academic year 2025-2026

Dean, Prof. dr. eng. Vasile-Ion Manta

1. Program data

"Gheorghe Asachi" Technical University of Iași
Automatic Control and Computer Engineering
Computers
Computers and Information Technology
Master
Artificial Intelligence

2. Subject data

2.1 Name of the subject / Code Voice and Speech Recognition (<i>Recunoașterea vocii și a vorbirii</i>) / AI.211				.211			
2.2 Course coordinator	r		Prof.	dr. eng. Florina Ungureanu	l		
2.3 Application instruc	ctor		Lect.	dr. eng. Alexandru-Gabrie	l Tudorache		
2.4 Year of study ²	2	2.5 Semester ³	1	2.6 Type of assessment ⁴	colloquium	2.7 Type of subject ⁵	DA

3. Estimated total time of daily activities (hours per semester)

Δ

3.1 Number of hours per week	2	3.2 lectures	1	3.3a sem.	3.3b laboratory	3.3c j	project	1
3.4 Total hours in curriculum ⁶	28	3.5 lectures	7	3.6a sem.	3.6b laboratory	3.6c p	project	7
Distribution of the time fund ⁷						No. ho	ours	
Study by textbook, course support, b	ibliograp	bhy and notes					30	1
Additional documentation in the library, on specialist electronic platforms and in the field						20	1	
Preparation of seminars/labs/projects, assignments, reports and portfolios						20	1	
Tutorial ⁸						-		
Examinations ⁹						2		
Other activities:						-		
3.7 Total hours of individual study ¹⁰ 72								
3.8 Total hours per semester ¹¹	100							

4. Prerequisites (where applicable)

3.9 Number of credits

4.1 curriculum ¹²	
4.2 competences	

5. Conditions (where applicable)

	 Laboratory room with computers and Internet access
5.2 conducting the project ¹³	 Open-source or free IDEs that allow students to
5.2 conducting the project	develop code in C++ or Python (Visual Studio
	Community Edition / PyCharm)

6. Specific competences accumulated¹⁴

¹Bachelor / Master

²1-4 for Bachelor's, 1-2 for Master's

³1-8 for Bachelors, 1-3 for Masters

⁴ Exam, colloquium or VP A/R – from the curriculum

⁵DF - fundamental subject, DID - subject in the field, DS - specialized subject or DC - complementary subject - from the education plan

⁶*It is equal to 14 weeksx number of hours from point 3.1 (similar for 3.5, 3.6abc)*

⁷*The lines below refer to the individual study; the total is completed at point 3.7.*

⁸Between 7 and 14 hours

⁹Between 2 and 6 hours

¹²Mention the subjects that must be passed previously or equivalent

¹⁰The sum of the values on the previous lines, which refer to the individual study.

¹¹The sum of the number of hours of direct teaching activity (3.4) and the number of hours of individual study (3.7); must be equal to the number of credits allocated to the subject (point 3.9)x 24 hours per credit.

¹³Computing technique, software packages, experimental stands, etc.

		Number of credits assigned to the subject ¹⁵ : 4	Distribution of credits per competences ¹⁶		
	CP1	Knowledge of advanced concepts of computer science and information technology and the ability to work with these concepts.	0.7		
	CP2	Scientific and practical research in the field of artificial intelligence.	0.7		
Profes	CP3	Problem solving using artificial intelligence methods and techniques.	1.6		
sional	CP4	Design and development of artificial intelligence systems.			
compe	CP5	Utilization of artificial intelligence tools and technologies.	0.7		
tences	tences CP6				
	CPS1				
	CPS2				
	CT1	Legislation compliant application of the intellectual property rights and of the principles, norms and values of the professional ethics code within their own strategies for rigorous, effective and responsible work.	0.2		
Trans versal compe	CT2	Application of communication techniques and effective group work; developing emphatic interpersonal communication skills and assuming leadership roles/functions in a multi-specialized team.	0.1		
tences	CT3	Creating opportunities for continuous training and the effective utilization of learning resources and techniques for personal development.			
	CTS				

7. Objectives of the subject (resulting from the grid of specific competences accumulated)

7.1 General objective of the subject	A better understanding of the AI methods that are used to recognize (analyse and process) audio signals and translate them into a familiar language.
7.2 Specific objectives	The project aims to achieve a hands-on approach to audio processing, similar to the ones found in different corporations that work on projects with devices that capture and interpret the human voice.

8. Contents

8.1 Course	Teaching methods ¹⁷	Remarks
	Powerpoint	
Week 1: Introduction.	presentations, answers to	
- recent developments	questions, explanations,	
- applications / impact / legal factors	case-studies	
- dialogue / error rates		
- TTS (text-to-speech) concepts		
- extraction of Social Meaning from Speech		
Week 3: Phonetics		
- speech production: flow, resonance and articulation		
- waveforms, spectogram		
Dialog systems		
- chatbots and (goal-based) dialog agents (conversational interface)		
- dialogue + task management		
- dialogue system design: finite-state dialog manager, frame-based systems		
- Natural language understanding (NLU) for filling slots + natural language		
generation (NLG)		
- Neural network review		
Week 5: ASR (Automatic Speech Recognition) Overview		
- architecture		
- the noisy channel model		
- the Viterbi algorithm		
- HMMs for speech		
- evaluation with word error rate		

 ¹⁴Competencies from the G1 and G1bis Grids of the study program, adapted to the specifics of the subject, for which credits are allocated (www.rncis.ro or the faculty website)
 ¹⁵From the education plan
 ¹⁶The credits allocated to the subject are distributed on professional and transversal competences according to the specifics of the subject

¹⁷Presentations, demonstrations, exercises, etc.

Week 7: Acoustic modelling - Hidden Markov Models and Gaussian Mixture Models (HMM-GMM); generative HMM-GMM ASR model - acoustic modelling for Large Vocabulary Continuous Speech Recognition (LVCSR) - Mel-Frequency Cepstral Coefficient (MFCC)		
Week 9: Recent ASR approaches - RNN-Transducer - Google on-device ASR, enabled by RNN-T - conformer: Convolution-augmented Transformer for Speech Recognition		
 dual mode ASR analysis of negative impacts of ML systems: harmful system and biased system 		
Week 11: Foundation models - Wav2Vec 2.0 - HuBERT - XLS-R cross-lingual features		
Text-to-Speech introduction - text analysis and waveform synthesis - text normalisation		
 TTS modelling history and overview; types of synthesis prosody and intonation Week 13: TTS 		
 evaluation and measurement: listening test paradigm, mean opinion score, AB tests; intelligibility tests, overall quality tests diagnostic rhyme test (DRT) data collection for TTS 		
 fundamental frequency (F0) generation by regression, declination unit selection intuition: target + join cost Parametric Synthesis: predicted parameters, vocoding / combination issues, prediction algorithms extracting social meaning with supervised ML (analysis tool); case studies 		
Course references:	<u> </u>	
 Stanford University, CS224S: Spoken Language Processing, <u>https://web</u> MIT OpenCourseware, Automatic Speech Recognition, <u>https://ocw.mit.ercognition-spring-2003/download/</u> R.G. Lyons: Understanding digital signal processing. Prentice-Hall, 2004 	du/courses/6-345-automatie	<u>c-speech-</u>
 Mert Pilanci, Signal processing for Machine Learning, <u>https://web.stanfc</u> Dan Jurafsky, Introduction to Computer Speech and Language Processin Markus Kuhn, Digital Signal Processing, University of Cambridge, Com <u>https://www.cl.cam.ac.uk/teaching/0809/DSP/</u> Voice recognition vs. speech recognition, <u>https://verbit.ai/voice-recognit</u> 	g, <u>https://web.stanford.edu</u> puter Laboratory,	/class/linguist238/
why-they-matter/		
8.2c Project	Teaching methods ¹⁸	Remarks
 A C++ or Python project, which uses the concepts from the course in real-world applications, such as: automotive - infotainment, road assistant commands healthcare - log patient details, treatment, extract recovery development 		
 sales - develop an AI chatbot, capable of convincing customers / maximise sales virtual agents - develop tools similar to Google Assistant, Siri, Alexa that can integrate various commands (perhaps using IoT 	General and individual explanations, individual/ team work	
platforms as well)		

Week 2: Introduction / team selection, conceptual choices, project work Week 4: Diagram, project work

¹⁸Case study, demonstration, exercise, error analysis, etc.

Week 6: Project work + milestone Week 8: Project testing, project work Week 10: Project testing, project work + milestone Week 12: Project work + final presentation		
Week 14: Final presentation		
Project references: see course references, up to date documentation for the ad	ctual selected platforms, t	utorials
1. Ravikiran A S. A Guide to Speech Recognition in Python: Everything Ye	ou Should Know.	

- https://www.simplilearn.com/tutorials/python-tutorial/speech-recognition-in-python
- 2. Alexa Development Tools and Skill Management APIs, Amazon, <u>https://developer.amazon.com/en-US/alexa/alexa-skills-kit/get-deeper/dev-tools-skill-management-api</u>

9. Corroboration of the contents of the subject with the expectations of representatives of the epistemic community, professional associations and representative employers in the field related to the program¹⁹

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in the final grade	
10.4a Colloquium	Acquired practical knowledge (quantity, correctness, accuracy)	Written theoretical test	30% (minimum 5)	
10.4d Project	The quality of the completed project, the correctness of the project documentation, and the justification of the chosen solutions	 Final project demonstration, test validation Milestones Discussions with students 	70% (minimum 5)	
10.5 Minimum performance standard ²⁰ : grade 5 in the colloquium and project work				

Date of completion, 5 December 2023 Signature of course coordinator, Prof.dr.eng. Florina Ungureanu Signature of application instructor, Lect. dr. eng. Alexandru-Gabriel Tudorache

Date of approval in the department, 7 December 2023 Director of department, Assoc. prof. dr. eng. Andrei Stan

Form PO.DID.04-F3, edition 2 revision 1

¹⁹The connection with other subjects, the usefulness of the subject on the labor market

²⁰The minimum performance standard from the competences grid of the study program is customized to the specifics of the subject, if applicable.