Rigid Body Kinematics
Algebraic and geometric methods in rigid body kinematics and dynamics
- By using the Lie group structure of the rigid rotations, and the associated Lie algebra, the tensor calculus is used as a tool in the study of the vector fields associated to the velocities and accelerations (up the the nth order) of the rigid body.
- A new set of procedures is developed in order to analytically determine the velocities and accelerations disctribution in a rigid body only from a minimal set of direct measurements. This procedure is developped in a coordinate-free form, and it allows the establishment of precise computation algorithms.
- A symbolic procedure to model the motion with respect to a non-inertial reference frame is developed. It is proven that it exists a bilateral smooth transfer between the aforementioned motion and the motion with respect to an inertial reference frame. This transfer is modeled by a proper orthogonal tensor valued function of real variable, which is determined analytically.
- This symbolic procedure, which is mostly associated with rigid body methods, also allows to offer new vectorial coordinate-free closed form solutions to some classical single-particle problems:
- The Foucault Pendulum problem
- The Kepler problem in a rotating reference frame
- The relative motion in a central force field, which leads to the closed form solution to the relative motion in a Newtonian potential field (the reader is refered here for a more detailed presentation of this result)
- The reduction of the motion in a central force field to a Keplerian motion
References:
- Condurache D., A New General investigation of the Kinematics of the Rigid Bodies, ISBN 973-9476-21-X, Polirom, 2000.
- Condurache D., Reprezentari simbolice. Aplicatii in teoria semnalelor si studiul sistemelor dinamice, ISBN 973-97101-8-2, Nord-Est, Iasi, 1996, 218 pag.
- Condurache, D., Matcovschi M. H., Fundamentele matematice ale mecanicii robotilor, www.ac.tuiasi.ro/ro/library/Fdm_Mec_Rob/index.html, 2000.
- Condurache, D., Martinusi, V., Foucault Pendulum-like problems: A Tensorial Approach, International Journal of Non-linear Mechanics, vol. 43, issue 8, 2008, pp. 743-760.
- Condurache D., Matcovschi M.H, Computation of angular velocity and acceleration tensors by direct measurements ,Acta Mechanica, Vol. 153, No. 3-4, 2002, pp. 147-167.
- Condurache D., Matcovschi M.H, Algebraic computation of the twist of a rigid body through direct measurements, Comput.Methods Appl.Mech.Engrg.Vol. 190, No. 40-41, 2001, pp. 5357-5376.
- Condurache D., The Lagrangian in a Nonstationary Electromagnetic Field in Non-Inertial Frames, Bul. Inst. Polit. Iasi, XLVII (LI),1-2,s.I., 2001, pp.87-96.
- Condurache D., Matcovschi M.H., Explicit Solution to Some Vectorial Differential Equation. II. Applications to Theoretical Mechanics, Bul. Inst. Polit. Iasi, XLVII (LI),1-2, s.I., 2001, pp. 315-325.
- Condurache D., Matcovschi M.H., Explicit Solution to Some Vectorial Differential Equations. I. General Results, Bul. Inst. Polit. Iasi, XLVII (LI),1-2, s.I,. 2001, pp. 303-313.
- Condurache D., A General Method to Obtain an Exact Vectorial Solution to Foucault`s Pendulum Problem , Bul. Inst. Iasi, XLVI(L), 1-2, sI, 2000, pp. 79-96.
- Condurache D., Remark on the movement in an elastic field, Bul. Inst. Polit. Iasi, XlV (XLIX),3-4, s.I, 1999, pp.85-94.
- Condurache D., On the composition of three spatial harmonic oscillations, Bul. Inst. Polit. Iasi, XLV (XLIX), 1-2,s.I, 1999, pp. 87-94.
- Condurache D., On the motion of a charged particle in a non-stationary electric and magnetic field, Bul. Inst. Iasi, XLV (XLIX),1-2,s.III, 1999, pp. 7-16.
- Condurache D., New Generalization of Poisson Formulae, Bul. Inst. Polit. Iasi, XLIV (XLVIII),3-4, s.I, 1998, pp 75-89.
- Condurache D., On the Acceleration Field of a Rigid Body under General Motion, Bul. Inst. Polit. Iasi, XLIV (XLVIII),1-2,s.I.,1998, pp. 67-73.
- Condurache D., An Exact Solution to Foucault`s Pendulum Problem, Bul. Inst. Polit. Iasi, XLIII (XLVII), 3-4,s.I, 1997, pp. 83-92.
- Condurache D., Braier A., A Method for the Direct Integration in the Study of Problems of Theoretical Mechanics, Bul. Inst. Polit. Iasi, XLI (XLV),1-2,s.I., 1995, pp. 14-25.
- Braier A., Condurache D., On the Instantaneous Angular Velocity Vector, Bul. Inst. Polit. Iasi, XXX (XXXIV), 1-4, sIII, 1984, pp. 25-58.
- Condurache, D., Martinuşi, V., Computing the Field of nth Order Accelerations in Rigid Motion by Direct Measurements, “The 2nd International Conference “Advanced Concepts in Mechanical Engineering””, Iasi , 15-17 iun., 2006.
- Condurache, D., Martinuşi, V., A Tensorial Explicit Solution to Darboux Equation, “The 2nd International Conference <<Advanced Concepts in Mechanical Engineering>>”, Iasi ,15-17 iun., 2006.
- Condurache, D., Martinuşi, V., Computing the Logarithm of Homogenous Matrices in SE(3), 1st International Conference ²Computational Mechanics and Virtual Engineering ² COMEC 2005, Braşov, 2005.
- Condurache D., Matcovschi M.H., On the n-Order Acceleration Distribution during Rigid Motion, 7-th International Symposium on Automatic Control and Computer Science, Iasi, Romania, 2001.
- Condurache D., Un procedeu simbolic in studiul dinamicii relative a particulei materiale, in volumul «Conceptie, tehnologie si management in constructia de masini», Institutul Politehnic «Gh. Asachi» Iasi, 1992.
- Condurache D., Asupra solutiilor matriciale ale unor ecuatii diferentiale vectoriale, Sesiunea stiintifica «Creatia tehnica si fiabilitatea in constructia de masini», Iasi, 1985.